a2 United States Patent

Backholm

US009444752B2

10) Patent No.: US 9,444,752 B2
45) Date of Patent: *Sep. 13, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

DISTRIBUTED CACHING SYSTEMS WITH
CONFIGURABLE EXTENDED CACHING
OPTIMIZATION

Applicant: Seven Networks, LL.C, Marshall, TX
us)

Inventor: Ari Backholm, Los Altos, CA (US)

Assignee: Seven Networks, LL.C, Marshall, TX
us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/502,386
Filed: Sep. 30, 2014

Prior Publication Data

US 2015/0016264 Al Jan. 15, 2015

Related U.S. Application Data

Continuation of application No.
PCT/US2014/046537, filed on Jul. 14, 2014.

Provisional application No. 61/861,933, filed on Aug.
2,2013, provisional application No. 61/860,331, filed

(Continued)

Int. CL.

HO4L 12/823 (2013.01)

HO4L 1226 (2006.01)
(Continued)

U.S. CL

CPC ..o HO4L 47/32 (2013.01); HO4L 43/16

(2013.01); HO4L 47/12 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ... HO4L 47/32; HO4L 43/16; HO4L 47/12;
HO4L 61/1551; HO4L 67/06;, HO4L 67/2842
USPC oo 370/278, 449, 412
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0117249 Al 6/2006 Hu et al.
2006/0282408 Al 12/2006 Wisely

(Continued)

FOREIGN PATENT DOCUMENTS

KR 20130048558 A 5/2013
OTHER PUBLICATIONS

Non-Final Office Action mailed May 1, 2015 for U.S. Appl. No.
12/080,142.

(Continued)

Primary Examiner — Ronald B Abelson
(74) Attorney, Agent, or Firm — NK Patent Law, PLL.C

(57) ABSTRACT

Methods and systems for distributed caching of information
using extended caching optimization are provided. Accord-
ing to one aspect, a method for distributed caching of
information using extended caching optimization includes,
at a mobile device for operating in a wireless network,
monitoring requests issued from an application located
within the device to an external entity not located within the
device; storing, in a local cache, responses to the monitored
requests received from the external entity; and, in response
to identifying a request as one that meets a first criterion for
optimization, applying an extended caching optimization,
including preventing the identified request from being trans-
mitted to the external entity and providing a response to the
identified request from the local cache.

29 Claims, 23 Drawing Sheets

Mobile Device
101

Host Server
pakl

Local Proxy

Appcation-t . Proxy Server
1024 105 13
fpatal | P Extended
Extended Caching Caching
| Optimization Engine Optimization
Application2 | | 107 Manager
1028 | 15
O < T O O i Se— P
|DATA! i >
LT e L S
Apptication-N i Locat Cache
102N | 185 Server Gache
______ 135
DATAY TTTOLOL e
¥ R,k
/N\
} Network j\‘ -
S
I N — v
L Iy . \J\
e v “y 10
b 1T

US 9,444,752 B2
Page 2

Related U.S. Application Data

on Jul. 31, 2013, provisional application No. 61/859,
364, filed on Jul. 29, 2013, provisional application
No. 61/859,056, filed on Jul. 26, 2013, provisional
application No. 61/858,013, filed on Jul. 24, 2013,
provisional application No. 61/857,114, filed on Jul.
22, 2013, provisional application No. 61/856,343,
filed on Jul. 19, 2013, provisional application No.
61/845,752, filed on Jul. 12, 2013.

(51) Int. CL
HO4L 12/801 (2013.01)
HO4L 29/12 (2006.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
HO4W 28/14 (2009.01)
HO4W 4/18 (2009.01)
(52) US.CL
CPC ... HO4L 61/1511 (2013.01); HO4L 67/06

(2013.01); HO4L 67/289 (2013.01); HO4L
67/2842 (2013.01); HO4L 67/2857 (2013.01);
HO4L 67/42 (2013.01); HO4W 4/18 (2013.01);
HO4W 28/14 (2013.01); HO4L 67/1095

(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0008095 Al 1/2008 Gilfix
2008/0207182 Al 8/2008 Maharahjh
2009/0172802 Al 7/2009 Mosek et al.
2010/0169407 Al 7/2010 Hsueh et al.
2011/0040718 Al 2/2011 Tendjoukian et al.
2012/0106415 Al 5/2012 Li et al.
2012/0110109 A1* 5/2012 Luna ... HO4L 67/22
709/213
2013/0142050 Al* 6/2013 Luna ... HO4W 4/18
370/241
2013/0163431 Al* 6/2013 Backholm HO04W 28/0273
370/235

OTHER PUBLICATIONS

ISR dated Nov. 24, 2014 for PCT Application PCT/US2014/
046537.

Office Action dated Oct. 24, 2013 for U.S. Appl. No. 13/176,537 and
associated notice of references cited.

Office Action dated Mar. 8, 2012 for U.S. Appl. No. 13/287,072 and
associated notice of references cited.

Office Action dated Feb. 15, 2012 for U.S. Appl. No. 13/287,085
and associated notice of references cited.

Office Action dated Sep. 13, 2012 for U.S. Appl. No. 13/474,561
and associated notice of references cited.

Office Actions dated Mar. 5, 2013, Nov. 8, 2012, and Aug. 15,2012
for U.S. Appl. No. 13/458,797 and associated notices of references
cited.

List of references cited on Nov. 7, 2013 for U.S. Appl. No.
13/592,233.

Office Actions dated May 1, 2014, Oct. 11, 2012, Jul. 2, 2012, and
Jan. 3, 2012 for U.S. Appl. No. 13/274,265 and associated notices
of references cited.

Office Actions dated Jun. 11, 2014, Jun. 28, 2012, and Jan. 9, 2012
for U.S. Appl. No. 13/274,501 and associated notices of references
cited.

Office Action dated Nov. 29, 2013 for U.S. Appl. No. 13/735,868
and associated notice of references cited.

Office Action dated Oct. 8, 2014 for U.S. Appl. No. 13/912,067 and
associated notice of references cited.

Office Action dated May 3, 2012 for U.S. Appl. No. 13/274,250 and
associated notice of references cited.

Office Actions dated Sep. 11, 2014, Apr. 29, 2014, Oct. 8, 2013, and
Now. 14, 2012 for U.S. Appl. No. 13/572,598 and associated notices
of references cited.

Office Actions dated Dec. 13, 2013 and U.S. Appl. No. 13/860,332
for U.S. Appl. No. 13/860,332 and associated notices of references
cited.

Non-final rejection mailed Jul. 31, 2015 for U.S. Appl. No.
13/915,538.

WIPO, International Preliminary Report on Patentability for PCT
patent application PCT/US2014/046537, Jan. 1, 2016.

* cited by examiner

US 9,444,752 B2

Sheet 1 of 23

Sep. 13, 2016

U.S. Patent

VI ‘OI4

0t

Gel
ayoen Joniasg

A

\

Sit
Jabeuep
uoteziundo
Buyoen
pepusxg

EIT
1an1ag Axoud

Py
J3AI8G 180K

N6t} d611 V6L
N-tanteghedpiyy g-enashAedpinyl L-1ontagAledpIY L
= 4
.,,,,
1
Y.ivQ
. —
81 NeO1
ayoeD 18007 N-uogeoyddy
- - i - » V1VQ
v wed Ly
g20t
ot g-uoijedyddy
subuz uoneziundo
Buyoen papuaixg
YivQd
> 0
BT Yeot
>x9wo_wool_ t-uopeaddy

Tot
201A9Q 2IGON

US 9,444,752 B2

Sheet 2 of 23

Sep. 13, 2016

U.S. Patent

a1 OId

SJIETNEIN
(s)onisg (
A I erg) {s)ionteg py
uodnon-s jeuoiiowold
OONPR momr\ <om_.\
S92IAIBS
JBYI0 ‘Syiomisu [B100S
ayoen
JONIBS }|ueIUl ‘sjeuiod
- 80T
Buibessepy
Jayio ‘
gel 10 'SININ 'SINS
yomian HIOMIDN |{ew3 [euosisd
g8t
ayoe)H jrew g aelodion
8007
Janies suodnon) o1w04108|3
1SOH
USIU0D [RUOIOWOIY
aoepIau| JUDLWIBSILIBARY
150
19pINOId B0

701
chi

004

19A19S uoneonddy
0Lt J]

U.S. Patent

Sep. 13, 2016

Sheet 3 of 23

App Server/
Content Provider

#/*110

! Optional Caching

!
!

e

US 9,444,752 B2

Ad Server(s)

I120A

I1ZOB

IT2OC

Proxy Server
125

Server Cache
135

Promotional
Content
Network Server(s)
199 108
! e-Coupon
i Server(s)
Proxy Server :
!
““““ Host Server

I1OO

Network
106

Mobile Device

Local Local
Pﬁy Cache

185

Short Message
Service Center

114

FIG. IC

US 9,444,752 B2

Sheet 4 of 23

Sep. 13, 2016

U.S. Patent

SOnAfeuy
obesn pue Bujlodey
Ll
Ax01d apig-1eniag
Gzl

s o

arl oIl

oyfel | peziwndo

ofjel] paziwido-uoN

-

Axoid spig-welD

\\ SLT

664 Axo1d Buwpoen
/d3d Aued payL

(" HomieN

2L SS800Y OlpeY

Y

0G1

201A9(BIIGON

U.S. Patent Sep. 13,2016 Sheet 5 of 23 US 9,444,752 B2

-~ {Radio/Battery/Display
Information App App App App
Mobile 161 ! 2 8 n
0S & e 163 163 163 163
AbDS X 7y A A
lpgg A 4 A Y.
OS
AN 162
h A A A A A
-~ \ A4 v A4 Y
,— - Device State r - Traffic Recognizer
i 11 Monitor 121 ! 122
Pl 3 !
o !
P 4 ‘
: : Extended :
P Caching [«
i | {Optimization| !)
: : Engine ; ”
o 177 i
Pl A !
o !
, Pl h 4 ! A4
Client- t 1| Local Data ! Protocol Optimizer 123
Side < b Cache |[€—1>
Proxy - 185 { HTTP | |HTTPS| | Other
175 - 2 !
!
: : A 4 ! \ 4
Pl i !
bl MPOI‘CV _ 1 | Traffic Scheduler
|- anager |[€—> 124 »
| 129 ! =
i 7 : T To/From
: y v ¢ Push Server-
i) Client [«—» Side
by Reporting Agent 126 > 128 Proxy
125
_ Watch Dog 127 >

FIG. IE

US 9,444,752 B2

Sheet 6 of 23

Sep. 13, 2016

U.S. Patent

OFr 08661
Axoid
Aued payy,
woli4/0]

Al "OIA

walsAg sondieuy abesn Buiodey o

JA 4 » » » ._»
L Pl L
Pl
aseqeieq 1oAI8g “ w
wewabeuep Ao10d P4 19AIBS
JOAIBS L UONEIION
wewebeuep Aoiod P
o \
Pl
P Iyl oyt
B 28
B JsziuoweH P Axoid
Jonses Buijjod onsel] P aseqeleq <> 9pIS
M “ ‘_ij |uC®:O
I \ - Wwoi4/0]
D
<> St 144" < M »
| Janieg Aejay
!
abeiois ElRQ BUOBD JOAIBS . \ ﬂ
f
et
WA | t
=7 6.1
SET g » 10beuep uoneziwundo
Buiyoe) papualxy >
L J
Y
YA

US 9,444,752 B2

Sheet 7 of 23

Sep. 13, 2016

U.S. Patent

[— 0100 H
G |O]
) S6UBLD ON
e [0
e SBUBLD ON =T
—ra | Lones
) SOUBLD ON >Wﬂwn_
—lod NEEN)
m— 1USIUIOD)
s [0
) SHUBYD) ON
Guussnss O]

o

OI "OIA

—

U8lu0d yolo4

uolEdHHON

b

Gt
{Ax0ud

[e00]
Tm.mv
AXOdd
3dIS

JUBIU0D yoilo4

» LN3IITO

L

UOIJEOH1ION

»

/Ilnﬂ

w—) JUSILIOD) Ram
4 O]
) OBUELO) ON
¢ {0
mumnd S5URYD) ON
L 65
—) SGUBYD ON
e O]

OQd—WZH+~ <oaw

m—) USIUOD)

G {10]
) S0UEYD) ON

L

¢ (O]

US 9,444,752 B2

Sheet 8 of 23

Sep. 13, 2016

U.S. Patent

HI "OIA

P —

S, Cit

]

{74}

A

A

Y

@w O9SINS

]

{aensas Axoud
“6-8) Axoid
opIS 18AI8G

oo/

[7A%
{Ax0.d [200]
“B-8) Axoud
8pIs WD

US 9,444,752 B2

Sheet 9 of 23

Sep. 13, 2016

U.S. Patent

IT "OIA

HIOM]ON SSO{OHM

19AB7 $S800Y WIOMION

- G
(piospuy “69) Johke SO
m so|ge] Bunnoy d |
R T R N
- ©) J
4 ™\
G/ T (Axoid {820}
“63) Axoid apis 108D Nddy eddy z2ddy 1ddy
o J

201A0Q 9JIqOI

0G4

US 9,444,752 B2

Sheet 10 of 23

Sep. 13, 2016

U.S. Patent

V< "OIAd

¥0¢
washs
BunesradO

§0¢
IdY X@juod

d4/1 7Bnied

M

4/l SNS

B0C 20BLOIU| YIOMION

[

_

T2 oInpow AAloY Jesn

b

auibug uonezLOUd

6Ee Joreisusn)
aljoid uolteoy|ddy

piyd
10}08}8(] ulened

9FZ 1010910 Joineyag uonediddy

(854

19beuRpy UonoBSURI 1SONbay

192
1obeuey leagleoH

99¢
Js|joauc) olpey

Tge iebeuppy UOHOBULOD

L5
m_:bos_m:_cowmm

Q|

EEH
anpowy wawubyy

GGe ouibug Buideys oyjed |

e Idv Axoud

Eiz4
9|NPOY 10001014 uonedyddy

She Jabeuep Aoyod Buiyoen

QL2
Axoid €007

\n\

B[O 2ieMy-AX0id

0¢g
uogeoyddy

012
uoijeoyddy

BIqON s4emeUn-AX0id

582
ayoen

—~

062 809 oJIqoIN

US 9,444,752 B2

Sheet 11 of 23

Sep. 13, 2016

U.S. Patent

qa¢ OIAd

eve

Aloysodey
aoid

uoneslddy

T¥e subuzg uonezguoud

08Ee
J010818Q] Builuny jjod Buo

EBEe

iayoel} {ealelu) A asuodssy

§¢ .4ojeiausD spjold uoneoyddy

ageg
aubug Bupoes) asuodseysanbay

354

10138l wislled

BETZ J0p08iaq l1od Buo

T2 10j08leq feaaiu] fiod

982

Jojosle(] Joineyag uonesljddy

Pove

99¥¢

e +ebeuepy Aoyod Buwyoen

I9zARUY @suodsay 19zAeuy 1senbay gve B
Aoysoday o mNocNmE
S Aotod eyoeg 1sipfoelg
lajnpaysg asuodssy ao%C B9%¢ uopesiddy
10]01paid UsiIon 10101peud Bung
&g euiBug
uofasiag Jo|uuo) Jo syoey 9z suibug uosioe(sseuelendorddy ayoe)
_ BQ02
_ 48lid 14N 40 4l
S0e _
374 qipg auibug | | e/pz aubug aulbug dn-yoo syoen [eord
aInpo swisnipy alepdn epg Jobeuey TLL ayoeD
{090]01d Suit] 8|npayog
uoneoyddy _— =S €0¢ Joreiaus epeto
7¥¢ Jojelausn) ainpsyos 11od Yo J0lepleau) ayoes oo €0¢ Jojeiausy) BlEPRIS

¢ Ol

US 9,444,752 B2

1574 o
ouIBUT UONBZNIOLY Jlopelaq [easiy] |lod
7E2 £e 7e2
Jopseg ioyeieg aNpop
=57 hioysodoy iajawered lojowered uonoBIX3
o0 oy aleq/ouny wopuey widled

uorreoyddy 10jIBUSL) B|j0Id uoHed|ddy

7€ Joyoeleq uvned

Te J010818(g Jotneyag uoieo)ddy

Sheet 12 of 23

Sep. 13, 2016

Tye fionsodoy
fonod ayoen 9ge 101veleq vz 1010918Q cce
- uoeyddy lelpweied sieq/Bwil | | Je18uwriRy WopURY cw”_mmwﬁm
bmﬂﬁn%ﬁmo Toe 1010919 IoldWeied 1eajeg ayoen uished
Tge eubug uopnjosay leejeq ayoen
(524 iz
auibug uonwsesg auibug uoisinag
193UU07) JO BYIED sseusjeudoiddy atjoen) _
_ _ _ _ 5Tz 21¢ J8ipueH
lejowered
- auibug yseH 1eo}aq SUORY
e Ve e S
8INPOYN J090104d I0JBIBUSY) IDIEDHEAU] e
voneoiddy aNPaLOg §i10d ayoen [eo07] JBZHBULION Jayiiuap]
S¥e

1efeuepw Aood Buiyorn

U.S. Patent

US 9,444,752 B2

Sheet 13 of 23

Sep. 13, 2016

U.S. Patent

ac OId

olfel) olpeL
souBUBIUBI SAIORIBI|

Pi¥e +ozuobaien oysel] uoiedddy

qiye
subug
uonosleq
AyjeonuD el

1010913 BIpoRg

(%4

3612
1obeuepy
uonepedxy
lesn

agie N
GIZ
B 18301 |
Runioy o5 | | AHAIOV iesn

G1Z anpoy Auanoy Jasn

punoibyoeg punoJbeio4 Bly2g
- aubugy
uoneziLolid
Sive Jtezuolisien sjelg uoneoyddy
BfZ J010819(] Joineyag uogedddy
P1se O1G¢
J0}098g auibuz uooseg

U104 $S820y

jauuBy) SS200Y

qiGe
Jaloadg aiey eieq

ElGC
1010898 pIEpUBIS
L0 BIBUSL) SSOIBIIM

52

9%c

apnpopy Buiyoteg 8|npopw luswiubyy

GGz ewbug Buideys oyeiy

TG suibug uoioses uoHeNBU0D MIOMIEN

US 9,444,752 B2

Sheet 14 of 23

Sep. 13, 2016

Ve "OId

U.S. Patent

91¢
Kionsodoy
56 55e 95t 1epInoid
Jebeuepy 18jjouoD J8J0I0D) eINPon GOINIDS HOMSN
yesquesH | |imieweiul| | opey 1090i0)d
uoieoyddy
CBE 1ebruepy UCHDBUUCYD TGt Jabeuepn
Aaijod Buiyoe N
1104 buiyoed 570
fioysoday
[UOHBULIOJU| 82IA8(
== 9% T
enpop BUIoIES SINPO 101EplBAY BIEQ N~
— L9E e|npopy 7Y€ 10109180 e
9LE ssauaiemy Aloud eiEQ MON FARS
|000104g {04jU0D Asoysoday
GE 9{NPOY SSauatemy L er Sm. UeIU0
G/¢ sulbugy 1omeySg/AINIDY GYE ouibuz n:ﬂ. coﬂomccooo
Budeys oyei) SOE J8|jonuo) Axoid SS90V dLIH ;
\\\ui/
N~
Gee
1on9g Axoid
diseney | 471 1410 /I SNS |
BOEC @oelou} MloMmlanN
00ge
19AI8S 1SOH _ __ __
01E 0028 802¢ VOTE
19PIADIY BINIFS (shenieg (shanies UBI0D | | (55018
05 /19188 Uonedyddy uodnon-3 JBLIONOWO S PY

US 9,444,752 B2

Sheet 15 of 23

Sep. 13, 2016

U.S. Patent

qa¢ "Old

pgGe
suibug uswisnipy swiy

08GE
autbu3g aepdn 9|npsayss

G8GE iobeuepy
1010918 1s8nbay jjod4 Buo

BRGE
jojenwis Buiwi 1SOH

8%¢
1sbBeurpy 8|NPaYIg |10d

IS¢

subuz BuLIOHUOK ©3IN0S JUBIL0YD

T8¢
Jozhjeuy esuodsey

B6GE
Jo}o8}a(g sluon
MaN 10 palepdn

1aBeuepy Aoljod Buyoen

o=t

9g¢g
SjNPO j00010.g uoneoyddy

GotE
suibuz dn-yoo ayoen

E0E
JolBIBUSL) BIEPRISH

gee
BayoRD) IanIeS

US 9,444,752 B2

Sheet 16 of 23

Sep. 13, 2016

U.S. Patent

D€ OIA

6GE 9G¢
40}08}8(USU0D 9INPON
MeN Jo perepdn j000101d uoneonddy
8GE ¥SE €ee
Jabeuepy sjnpopy bupjoe. | SINPON
8jNPaYOs |1od wislied Jajjiiuap] JSHIPOW Jaijiuap|
pASS

auibug Buuonuop
801N0S JUBIUON)

25t

JabBeuepy 82inog Buesiaq syoen

Gage
1obeuepy Aolod Buyoen

US 9,444,752 B2

Sheet 17 of 23

Sep. 13, 2016

U.S. Patent

ag "OIA

oyyes] eIy arve
SoUBUBIURH anjoBIBI| —| auiBug uonosleq

Aureonuo auiy.

Pive Jezuoberen oyel

punoifyoeg puno.ifeioy Bi{yE
L suibug
uonezijuoud

IIFE Jezuobsien sairig uoneoyddy

OET sozAjeuy dujel}

g 8/t
ainpo buryoreg s|npo Juswubiy

GZ¢ eulbugz Buideyg oye.}

US 9,444,752 B2

Sheet 18 of 23

Sep. 13, 2016

U.S. Patent

VE “OIA

1i}7
auibug uoneziundo
Buiyoen papuaixg

1abeueyy 1BegueaH

992
IBJJ0UOD) OIPBRY

§og Jiebeuepy uondsuuon

voz 02
WIBISAG demed | | 4 I | | /1 SINS
Buneisdp IdV XS
: 802 8oelsiu| MIoMISN
_ “]
_
GT2 ainpop AlAnoy 1esn
I9¢
Tve
suibug uoneznuoud
BES JojeIOUSD) Y4 %2
ajo.d uoneayddy 1010818 UIslled ajnpoyy b

98T J010018(] Joineyog uonedddy

gee

Jefeuepy uoioRsUR: | /isenbay

98¢

uiyoreg aInpop Judwudiy

G5¢

suibuz Buideys ouges g

anpoyy j0001014 uoheoyddy

8%e

S22 |dv Axoig Shz Jebeuepy Koyog Bulyden
S/2 P — —
Axoid {8007 0ze 012 G8c
uoneoyddy uoiresyddy syoes

3|IGON alemy-Ax01d

BJIGON aremeun-Axold

\l\

0S¢ @diasQ 9lIqoN

U.S. Patent

Sep. 13, 2016

Sheet 19 of 23

Local cache
285

Extended Caching Optimization (ECO) Engine 401

ECOQO level setting 410

Cache freshness determination
module 420

Device specific information
module
430

Heterogenous Cache Service module
490

Cache categorization module
490A

Application categorization
module
490A

Safeguard module

440

DNS CE Expiration module
450

Invalidate-without-cache module
460

Invalidate-with-cache module
470

Long Poll Response Delay module
495

il
|
: 495A

I' Previous Transactions Observing :
: module |
i 4958 [

Irregular Polling Pattern
Recognition and Caching module
480

FIG. 4B

US 9,444,752 B2

VS ‘OI1d

US 9,444,752 B2

Sheet 20 of 23

Sep. 13, 2016

U.S. Patent

9ig
Alolisoday
9%% — 1BDIAOId
86t 168 96¢E 105
1abeuBpy isjjouoD 1801100 SINPON sebBeuepy SOIAIBS YOMISN
teaquesy | |1dmadueiul| | oipey 1ogolald uoneziundo
uoieayddy Buiuoe
ulyoe)
GBE 49fBuUBRpy UOHIBUUOD TGT Jobeuepy pspusixgy
Aono4 Buiyoe T TN
llod DUYIED 5TE
Atoysoday
| | UOI[BWLIOM| 83IABQ
I7e ajnpo _oﬁgc ele ~—
sinpojy Buiyoieg INPON J01EpleAU| BleQ
Z9E SNpopy N
9t ssauatemy AIoUd ZVE 1010818Q ¢Le
|0001014 {04U0N eleq MaN Asoysoday
JOET 9INPON SSBUdIBMY BIEPEISIN JuBluo)
7E ouibug fojaryBE/ARAROY ©FE suibug pUB UOII0BULIS)
Buideys oigel | SOE Jajjonuos) Axold $S000Y d1IH LT
Gce
JenIBg Axold
| anmmpo]| e _ 4/ SWS |
B0C @oBu8lU| YOMIBN
T
(o]0}
JOAI9S 1SOH —
0t€ 00cE g0ce v0zE
19DINOId 80IAI8S (sieniag (s)ientog siuo) (s)10A10
Jeniag uvoneoddy uodnon-3 JELIOROWOI SPY

US 9,444,752 B2

Sheet 21 of 23

Sep. 13, 2016

U.S. Patent

q¢ "OIAd

0.5
BINPOW SYIBI-UUM-BIEPHEAU|

095
S[NPOU 8YDEI-INCYNM-SIEPIBAU|
_

055
a|npow uonesdx3 30 SNA

(6179
ainpow psenbojes

0cs
ajnpow uoleLLIou o1oads aomaq

02g
BINPOW UDIBUILLIBISD SSBUYSa.) 8yoen

07¢ jons| Builtes 003

105 180euepy voneziundQ Buiyoen papusixg

U.S. Patent

Sep. 13, 2016

602

620
N

Processor

Instructions

604

622

|

Main Memory

Instructions

605\/\ Non-volatile Memory

608

~" Network Interface Device

610

Bus

FIG. 6

Sheet 22 of 23

612

600

Video Display

Alpha-numeric Input Device

Cursor Control Device

Drive Unit

Machine-readable
{Storage) Medium

Instructions | —~_J

L~

US 9,444,752 B2

624

626

628

614

~ 616

18

Signal Generation Device

630

U.S. Patent Sep. 13, 2016 Sheet 23 of 23 US 9,444,752 B2

AT A MOBILE DEVICE FOR OPERATING IN A
WIRELESS NETWORK, THE DEVICE INCLUDING A
LOCAL PROXY FOR MONITORING REQUESTS
700 ISSUED FROM AN APPLICATION LOCATED WITHIN
THE DEVICE TO AN EXTERNAL ENTITY NOT
LOCATED WITHIN THE DEVICE AND FOR STORING,
IN A LOCAL CACHE, RESPONSES TO THE
MONITORED REQUESTS RECEIVED FROM THE
EXTERNAL ENTITY, IDENTIFYING A REQUEST AS
ONE THAT MEETS A FIRST CRITERION FOR
OPTIMIZATION

l

IN RESPONSE TO IDENTIFYING THE REQUEST AS
ONE THAT MEETS A FIRST CRITERION FOR

702 OPTIMIZATION, APPLYING AN EXTENDED CACHING

OPTIMIZATION, WHERE APPLYING AN EXTENDED

CACHING OPTIMIZATION INCLUDES PREVENTING

THE IDENTIFIED REQUEST FROM BEING
TRANSMITTED TO THE EXTERNAL ENTITY AND
PROVIDING A RESPONSE TO THE IDENTIFIED
REQUEST FROM THE LOCAL CACHE

FIG. 7

US 9,444,752 B2

1
DISTRIBUTED CACHING SYSTEMS WITH
CONFIGURABLE EXTENDED CACHING
OPTIMIZATION

PRIORITY CLAIM

This application is a continuation of International Patent
Application Serial No. PCT/US14/46537, filed Jul. 14,
2014, which claims the benefit of U.S. Provisional Patent
Application Ser. No. 61/845,752, filed Jul. 12, 2013; U.S.
Provisional Patent Application Ser. No. 61/856,343, filed
Jul. 19, 2013; U.S. Provisional Patent Application Ser. No.
61/857,114, filed Jul. 22, 2013; U.S. Provisional Patent
Application Ser. No. 61/858,013, filed Jul. 24, 2013; U.S.
Provisional Patent Application Ser. No. 61/859,056, filed
Jul. 26, 2013; U.S. Provisional Patent Application Ser. No.
61/859,364, filed Jul. 29, 2013: U.S. Provisional Patent
Application Ser. No. 61/860,331, filed Jul. 31, 2013; and
U.S. Provisional Patent Application Ser. No. 61/861,933,
filed Aug. 2, 2013, the disclosures of each of which are
incorporated herein by reference in their entireties.

TECHNICAL FIELD

This disclosure relates to signaling optimization in tele-
communication networks and data networks. More specifi-
cally, it relates to methods and systems for reducing traffic
to and from a mobile device via the implementation of
distributed caching systems with configurable extended
caching optimization.

BACKGROUND

The constant connections and disconnections of a mobile
device to services and entities within a telecommunication
and/or data network increase the amount of signaling net-
work traffic within that network, which lowers the perfor-
mance of the network overall. This imposes a burden upon
network operators that forces them to increase bandwidth
and network access.

It is very common for a mobile device to be receiving data
from multiple sources (e.g., servers, web-sites, nodes of a
network, etc.) in the service network. Smart phones, for
example, may run several applications in parallel, and each
application may engage in a periodic or non-periodic hand-
shake with a network server, such as to check to see if there
is any content to be downloaded to the mobile device or
uploaded from the mobile device, to determine whether the
connection between the mobile device and server should still
be maintained, and so on.

In some circumstances, these handshaking interactions
have little or no value to a user, such as when the user is not
currently engaged in active use of the device, e.g., when the
screen is dark or when the device is lying unused in a purse
or backpack. Even when the user is actively using the
device, an application on the device that continually polls a
server to determine if there is content, such as text messages,
email, etc., available may generate needless traffic if there is
no content for the mobile device/user of that device.

In addition, such transactions typically put the mobile
device radio in a high-power mode for a considerable length
of time—typically between 15-30 seconds. As the high-
power mode can consume as much as 100x the power as an
idle mode, these network-initiated applications are power
hungry and can quickly drain the battery. The issue has been
exacerbated by the rapid increase of the popularity of
applications with network-initiated functionalities, such as

20

25

30

40

45

50

55

2

push email, news feeds, status updates, multimedia content
sharing and other mobile applications, etc. Furthermore, the
problem with constant polling is that mobile phones also
rely on signaling to send and receive calls and SMS mes-
sages and sometimes these basic mobile functions are forced
to take a backseat to unruly applications and other mobile
clients.

Thus, not only do these transactions consume battery
power of the device—e.g., to activate an otherwise dormant
radio transceiver circuit—the traffic so generated by these
handshaking transactions consumes wireless bandwidth,
such as between the mobile device and the cell tower, for
example.

Therefore, in light of these disadvantages associated with
conventional interactions between applications residing on a
mobile device and the network entities with which the
mobile device and its applications may interact, there is a
need to optimize or reduce this kind of traffic. More spe-
cifically, there is a need for distributed caching systems with
configurable extended caching optimization.

SUMMARY

According to one aspect, a method for distributed caching
of information using extended caching optimization. The
method includes, at a mobile device for operating in a
wireless network, monitoring requests issued from an appli-
cation located within the device to an external entity not
located within the device; storing, in a local cache, responses
to the monitored requests received from the external entity;
and, in response to identifying a request as one that meets a
first criterion for optimization, applying an extended caching
optimization, including preventing the identified request
from being transmitted to the external entity and providing
a response to the identified request from the local cache.

According to another aspect, the subject matter described
herein includes a system for distributed caching of informa-
tion using extended caching optimization. The system
includes a mobile device for operating in a wireless network.
The device includes a local cache and a local proxy for
monitoring requests issued from an application located
within the device to an external entity not located within the
device and for storing, in the local cache, responses to the
monitored requests received from the external entity. The
local proxy identifies a request as one that meets a first
criterion for optimization and applys an extended caching
optimization, including preventing the identified request
from being transmitted to the external entity and providing
a response to the identified request from the local cache.

According to yet another aspect, the subject matter
described herein includes a computer program product for
distributed caching of information using extended caching
optimization. The computer program product includes a
non-transitory computer readable storage medium having
computer readable code embodied therewith, the computer
readable code configured for at a mobile device for operat-
ing in a wireless network, monitoring requests issued from
an application located within the device to an external entity
not located within the device; storing, in a local cache,
responses to the monitored requests received from the
external entity; and, in response to identifying a request as
one that meets a first criterion for optimization, applying an
extended caching optimization, including preventing the
identified request from being transmitted to the external
entity and providing a response to the identified request from
the local cache.

US 9,444,752 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments are illustrated by way of
example and are not intended to be limited by the figures of
the accompanying drawings. In the drawings:

FIG. 1A depicts a diagram illustrating example resources,
including an extended caching optimization engine and an
extended caching optimization manager that can function
individually and/or together to implement the techniques
disclosed herein;

FIG. 1B depicts an example diagram of a system where a
host server facilitates management of traffic, content cach-
ing, and/or resource conservation, and/or extended caching
optimization;

FIG. 1C depicts an example diagram of a proxy and cache
system distributed between the host server and device which
facilitates network traffic management and/or extended
caching optimization;

FIG. 1D depicts an example diagram of the logical
architecture of a distributed proxy and cache system;

FIG. 1E depicts an example diagram showing the archi-
tecture of client side components in a distributed proxy and
cache system with an extended caching optimization engine
implemented on the client-side proxy;

FIG. 1F depicts an example diagram of the example
components on the server side of the distributed proxy and
cache system with an extended caching optimization man-
ager implemented on the server-side proxy;

FIG. 1G depicts an example diagram of a signaling
optimizer of the distributed proxy and cache system;

FIG. 1H depicts an example diagram of an example
client-server architecture of the distributed proxy and cache
system,

FIG. 11 depicts an example diagram illustrating data flows
between example client side components in a distributed
proxy and cache system;

FIG. 2A depicts a block diagram illustrating an example
of client-side components in a distributed proxy and cache
system residing on a mobile device (e.g., wireless device)
that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, traffic
management, and/or extended caching optimization;

FIG. 2B depicts a block diagram illustrating a further
example of components in the cache system shown in the
example of FIG. 2A;

FIG. 2C depicts a block diagram illustrating additional
components in the application behavior detector and the
caching policy manager in the cache system shown in the
example of FIG. 2A;

FIG. 2D depicts a block diagram illustrating examples of
additional components in the local cache shown in the
example of FIG. 2A;

FIG. 3A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system that manages traffic in a wireless network (or broad-
band network) for resource conservation, content caching,
traffic management, and/or extended caching optimization;

FIG. 3B depicts a block diagram illustrating a further
example of components in the caching policy manager in the
cache system shown in the example of FIG. 3A;

FIG. 3C depicts a block diagram illustrating another
example of components in the proxy system shown in the
example of FIG. 3A;

FIG. 3D depicts a block diagram illustrating examples of
additional components in proxy server shown in the example
of FIG. 3A;

10

15

25

35

40

45

50

55

60

4

FIG. 4A depicts a block diagram illustrating another
example of client-side components in a distributed proxy
and cache system, further including an extended caching
optimization engine;

FIG. 4B depicts a block diagram illustrating additional
components in the extended caching optimization engine
shown in the example of FIG. 4A;

FIG. 5A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system, further including an extended caching optimization
manager;

FIG. 5B depicts a block diagram illustrating additional
components in the extended caching optimization manager
shown in the example of FIG. 5A;

FIG. 6 depicts a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed; and

FIG. 7 depicts a flowchart illustrating an exemplary
process for distributed caching of information using
extended caching optimization according to an embodiment
of the subject matter described herein.

The same reference numbers and any acronyms identify
elements or acts with the same or similar structure or
functionality throughout the drawings and specification for
ease of understanding and convenience.

DETAILED DESCRIPTION

The following description and drawings are illustrative
and are not to be construed as limiting. Numerous specific
details are described to provide a thorough understanding of
the disclosure. However, in certain instances, well-known or
conventional details are not described in order to avoid
obscuring the description. References to one or an embodi-
ment in the present disclosure can be, but not necessarily are,
references to the same embodiment; and, such references
mean at least one of the embodiments.

Reference in this specification to “one embodiment™ or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the disclo-
sure. The appearances of the phrase “in one embodiment” in
various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not other
embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no influence on the
scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor

US 9,444,752 B2

5

is any special significance to be placed upon whether or not
a term is elaborated or discussed herein. Synonyms for
certain terms are provided. A recital of one or more syn-
onyms does not exclude the use of other synonyms. The use
of examples anywhere in this specification including
examples of any terms discussed herein is illustrative only,
and is not intended to further limit the scope and meaning of
the disclosure or of any exemplified term. Likewise, the
disclosure is not limited to various embodiments given in
this specification.

Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used
herein have the same meaning as commonly understood by
one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document,
including definitions will control.

FIG. 1A depicts a diagram 10 illustrating example
resources that implement the extended caching optimization
techniques disclosed herein. Included in the diagram 10 are
a mobile device 101, a host server 111, a plurality of
third-party servers 119, and a communications network 117.

The mobile device 101 and host servers 111, 119 are
coupled in communication for data transmission over the
network 117. For example, the components may be con-
nected via a twisted pair cabling network, a coax cable
network, a telephonic network, or any suitable type of
connection network. In some embodiments, the network 117
may be wireless. The technologies supporting the commu-
nications between the mobile device 101 and host servers
111, 119 may include Ethernet, cellular, WiFi, and/or other
suitable types of area network technologies. One of ordinary
skill in the art will understand that the components of FIG.
1 are just one implementation of the computer network
environment within which present embodiments may be
implemented, and the various alternative embodiments are
within the scope of the present embodiments. For example,
the network 117 may include intervening devices (e.g.,
switches, routers, hubs, base stations, etc.) in the network
117. In some examples, the network 117 comprises the
Internet. Depending on the embodiments, mobile device 101
can be connected directly to the host server 111, or via the
network 117, or both.

The host server 111 may be one or more server computers
or work stations that are employed by a merchant for hosting
websites that function as a channel to customer users for
browsing products and placing purchase orders. The host
server 111 typically includes at least one processor and a
memory, and may be further connected to one or more
computers (not shown in FIG. 1 for simplicity) that manage
inventory, logistics and/or other commercial functions via
the network 117. The host server 111 may be a host server
that facilitates management of traffic, content caching, and/
or resource conservation (e.g., the host server 100, described
in FIG. 1B below) or another server that is separate from the
host server 100. Depending on the embodiments, this sepa-
rate server may be a portion of the host server 100, or it may
be hosted by a third party (e.g., the third-party server 119).

The mobile device 101, which may be used by a customer
user to communicate with the host server 111, may include
a laptop, a tablet, a personal computer, a personal digital
assistant (“PDA”), a smart phone, and the like. The mobile
device 101 typically includes a display (not shown in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

6

1 for simplicity), and may include suitable input devices (not
shown for simplicity) such as a keyboard, a mouse, or a
touchpad. In some embodiments, the display may be a
touch-sensitive screen that includes input functionalities.

Applications 102 (e.g., applications 102A-102N) are
example applications of the mobile device 101. Applications
102 on mobile device 101 can communicate directly to the
third-party servers 119 via the network 117. Some examples
of applications 102 include news application, weather ser-
vices, email clients, and/or social network applications. In
general, each application 102 has a plurality of data relevant
or necessary to the normal operations of the application. It
is also typical that these applications 102 routinely commu-
nicate with the third-party servers 119 (e.g., via well-known
polling techniques) for any update, and receive the updates
via the network 117, using one or more radio communication
modules (not shown in FIG. 1 for simplicity).

Signal Optimization

The embodiments disclosed herein recognize that the
number and capability of mobile devices have increased
dramatically in recent years, putting tremendous pressure on
mobile carriers to optimize and manage finite network
resources. Subscribers use their devices more intensively
than ever, installing any number of countless thousands of
applications. Carriers have no control over what applications
are installed on end-user devices or the behavior of those
apps. This has led to a loss of operator control over mobile
data traffic itself.

Accordingly, as is described in more detail below, the
present disclosure addresses these challenges by optimizing
and managing signaling activity, increasing control over
data traffic for mobile carriers. It conserves network band-
width, freeing capacity for uses that provide the highest
value to subscribers.

More specifically, many mobile applications (e.g., appli-
cations 102A-102N) regularly poll their application servers
119A-119N to check for new data. Every time an application
(e.g., application 102A) checks for updates, even when no
new data is available, the device signals the wireless net-
work (e.g., network 117). This signaling activity creates
congestion as the radio network is overwhelmed with con-
stant requests to connect. Network bandwidth is wasted
when applications repeatedly download unchanged content.
Carriers face increasing costs as they are forced to expand
capacity to accommodate both excessive signaling activity
and increasing demand for bandwidth. Unnecessary mobile
signaling has an adverse effect on end-user experience,
including longer setup times, slower speeds, and even denial
of service. It results in shorter battery life for devices (e.g.,
device 101)—an issue that impacts both subscribers and
device manufacturers.

In general, the signaling optimization techniques dis-
closed herein significantly reduce mobile signaling to relieve
mobile network congestion. The techniques can manage the
exchange of control information and content between
mobile devices and the network, using various virtualized
proxy and caching technologies. They can analyze mobile
application data requests, transparently detect redundant
traffic patterns and cache the results of unnecessary requests
on the client. The signal optimization server (e.g., host
server 111) polls for updates, so that the client (e.g., device
101, through local proxy 105) connects to the network only
when updates are available. Optimizing signaling at the
handset prevents consumption of network resources,
enabling more efficient use of those resources. Caching
content on the client (e.g., at local cache 185) also reduces
network bandwidth utilization. In one embodiment, local

US 9,444,752 B2

7

cache 185 may be used to store copies of requests received
from applications 102, copies of responses received from
host server 111, or other useful information.

The disclosed signaling optimization techniques reduce
operators’ costs by delaying the need for expensive upgrades
to wireless network infrastructure. They improve subscriber
experience by increasing service levels and extending the
battery life of mobile devices.

Moreover, it is noted that the signaling optimization
techniques disclosed herein are transparent to end users and
to the operation of their mobile apps, with a minimal impact
on device CPU and memory. The techniques which can be
implemented in form of, for example, software require no
(or little, if any) changes to applications or to the network
itself, thereby supporting any underlying mobile network
technology. These techniques can also complement other
techniques for mobile traffic management, including com-
pression and deep packet inspection.

Overall, among other benefits, the disclosed techniques
can reduce wireless operator costs, conserve mobile network
bandwidth, significantly reduce mobile signaling, delay the
needs for wireless infrastructure upgrades, and extend
device battery life and improves service levels.

In accordance with some embodiments, a client compo-
nent (e.g., local proxy 105) and a server component (e.g.,
proxy server 113) can either individually or together or both
perform the signal optimization techniques. Customers can
choose between two deployment models for the server
software. In some embodiments, Hosted deployment allows
customers to get the solution up and running as quickly as
possible.

In-network deployment of the server software is recom-
mended for customers who want in-house, hands-on control
over all aspects of the solution. In this model, the manage-
ment server resides in the customer data center. Pushing
optimization to the client stops unnecessary signaling before
it can consume network resources. This is in contrast to
conventional approaches to addressing the signaling chal-
lenge, which rely on network-side capabilities such as deep
packet inspection.

Signal Optimization—Extended Caching

It is a goal for the network carriers seek to maximize the
aggregate value provided by finite network resources across
the entire subscriber base, which requires that these
resources be allocated to their highest-value uses. This
approach allows the carriers to maximize their ability to
monetize infrastructure investments. The “Extended Cach-
ing” techniques, which are disclosed herein and will be
described in more details below, are a powerful tool in
achieving these goals.

More specifically, it is recognized by the disclosed
embodiments that there is an inherent trade-off in the fre-
quency of updates for mobile apps and the consumption of
network resources. When no update is available, the present
embodiments recognize that connecting to the network
serves no useful purpose and needlessly consumes network
resources.

Furthermore, even when an update is available, the user
may not derive much or any benefit from it as not all updates
are created equal—end users derive more benefit from some
updates than others. Updates that occur when a device is
actively being used are more useful and valuable to the user
than those that occur when the device is asleep. The cost, in
terms of mobile network resource consumed in providing
updates, may easily exceed the benefit; especially if the
device is not being actively used. For example, when the
screen is not lit and the radio is inactive, the user may have

10

15

20

25

30

35

40

45

50

55

60

65

8

left the device in another room. In this common situation, no
benefit is received, but network resources are consumed.
Thus, network resources are being misallocated in the sense
that they are being applied in a way that yields little or no
subscriber value. The subscriber base as a whole is better
served if those network resources are allocated to users who
are actually using their devices at the time. Information on
the device state can serve as a useful tool for carriers to
determine the benefit that an update provides.

As such, in some embodiments, such as system 10 shown
in FIG. 1A, the local proxy 105 includes an extended
caching optimization engine 107, and the proxy server 113
includes an extended caching optimization manager 115 that
can function individually and/or together to implement the
techniques disclosed herein. In one embodiment, proxy
server 113 may include a server cache 135, which may be
used to store requests received from mobile device 101,
responses received from servers 119, or other useful infor-
mation.

Configurable Settings in Extended Caching Optimization

The extended caching optimization engine 107 (and/or the
extended caching optimization manager 115) includes con-
figurable cache settings to fine tune the way the product
responds to changes in cached resources. For example,
extended caching optimization engine 107 can apply to
situations when the screen is not lit or the radio is not
connected to the network. These device states correspond to
situations where the user is likely to receive less benefit from
an update, even when one is available. Extended cache
settings delay delivery of updates in device states where the
end user receives less benefit from getting an update at that
particular moment in time.

The extended caching optimization engine 107 (and/or the
extended caching optimization manager 115) includes a
configurable, “tunable” parameter because carriers require
fine-grained control to allocate finite resources to the high-
est-value use case. The choice of which configuration set-
tings to use can be a judgment call on the part of the carrier,
and can be made in the context of each carrier network’s
unique subscriber base, usage patterns, and behaviors. As an
example of the flexibility of the configurable settings, the
lowest setting level (default) tunes the product to favor
priority of end-user experience over congestion relief/bat-
tery life. This is in contrast to the highest setting level that
favors congestion relief/battery life over priority of end-user
experience.

The Extended Caching settings can be modified in real
time using either an application programming interface
(APD) (e.g., a proprietary “REST” API as provided by
SEVEN Networks Inc.) or a Management Web Interface.
Changes to settings are communicated to in-market devices
immediately (e.g., from the optimization manager 115 to the
optimization engine 107). Devices (e.g., device 101) that
may be powered off at the time of the change receives the
most recent update when they return to the network 117.

In some embodiments, Extended Caching settings apply
to all applications that are being optimized by Open Channel
Signaling Optimization. In some other embodiments,
Extended Caching to be enabled for selective applications.

Also, in one or more embodiments, Extended Caching
levels can be set on an individual user basis. This can be
done via integration with the REST API. In addition, some
embodiments support creation of Extended Caching Groups
which can be used to associate users with common data
plans, etc., to specific Extended Caching settings.

These and various other embodiments and implementa-
tions of the disclosed extended caching optimization (ECO)

US 9,444,752 B2

9

techniques in achieving aggressive signal optimization, as
well as various components in the embodiments of ECO
techniques (e.g., ECO engine 107 and/or ECO manager
115), are described in more details below. It is further noted
that some specific examples of the extended caching opti-
mization engine 107 and the extended caching optimization
manager 115, including their behaviors under different con-
figurable settings in performing different functions (e.g.,
which may be aimed at solving different scenarios) are
introduced in relation to FIGS. 4A, 4B, 5A and 5B.

FIG. 1B illustrates an example diagram of a system where
a host server 100 facilitates management of traffic, content
caching, and/or resource conservation and/or signal optimi-
zation or extended caching optimization between mobile
devices (e.g., wireless devices 150), and an application
server or content provider 110, or other servers such as an ad
server 120A, promotional content server 120B, or an e-cou-
pon server 120C in a wireless network (or broadband
network) for resource conservation. The host server 100 can
further interact with mobile or client devices 150 for getting
reports and/or updates on resource usage, savings, and the
like.

Client device 150 can be any system and/or device, and/or
any combination of devices/systems that is able to establish
a connection, including wired, wireless, and cellular con-
nections, with another device, a server, and/or other systems,
such as host server 100 and/or application server/content
provider 110. Client devices 150 may provide to a user 103
a user interface 104, which may include a display and/or
other output functionalities to present information and data
exchanged between among the devices 150 and/or the host
server 100 and/or application server/content provider 110.
The application server/content provider 110 can by any
server, including third party servers or service/content pro-
viders further including advertisement, promotional content,
publication, or electronic coupon servers or services. Simi-
larly, separate advertisement servers 120A, promotional
content servers 120B, and/or e-Coupon servers 120C as
application servers or content providers are illustrated by
way of example.

For example, client devices 150 can include mobile, hand
held or portable devices, wireless devices, or non-portable
devices and can be any of, but not limited to, a server
desktop, a desktop computer, a computer cluster, or portable
devices, including a notebook, a laptop computer, a hand-
held computer, a palmtop computer, a mobile phone, a cell
phone, a smart phone, a PDA, a Blackberry device, a Palm
device, a handheld tablet (e.g., an iPad or any other tablet),
a hand held console, a hand held gaming device or console,
any SuperPhone such as the iPhone, and/or any other
portable, mobile, hand held devices, or fixed wireless inter-
face such as a M2M device, etc. In one embodiment, the
client devices 150, host server 100, and application server
110 are coupled via a network 106 and/or a network 108. In
one embodiment, network 106 may be a cellular or mobile
network, which device 150 may connect to via a base
station, radio network controller, or radio access network,
represented in FIG. 1B as a cell phone tower 112. In some
embodiments, the devices 150 and host server 100 may be
directly connected to one another.

The input mechanism on client devices 150 can include
touch screen keypad (including single touch, multi-touch,
gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (e.g., includ-
ing 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor,
capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation

10

15

20

25

30

35

40

45

50

55

60

65

10

detector (e.g., electronic compass, tilt sensor, rotation sen-
sor, gyroscope, accelerometer), or a combination of the
above.

Signals received or detected indicating user activity at
client devices 150 through one or more of the above input
mechanism, or others, can be used in the disclosed technol-
ogy in acquiring context awareness at the client device 150.
Context awareness at client devices 150 generally includes,
by way of example but not limitation, client device 150
operation or state acknowledgement, management, user
activity/behavior/interaction awareness, detection, sensing,
tracking, trending, and/or application (e.g., mobile applica-
tions) type, behavior, activity, operating state, etc.

Context awareness in the present disclosure also includes
knowledge and detection of network side contextual data
and can include network information such as network capac-
ity, bandwidth, traffic, type of network/connectivity, and/or
any other operational state data and/or mobile application
loading and/or activities. Network side contextual data can
be received from and/or queried from network service
providers (e.g., cell provider 112 and/or Internet service
providers) of the network 106 and/or network 108 (e.g., by
the host server and/or devices 150). In addition to applica-
tion context awareness as determined from the client 150
side, the application context awareness may also be received
from or obtained/queried from the respective application/
service providers 110 (by the host 100 and/or client devices
150).

The host server 100 can use, for example, contextual
information obtained for client devices 150, networks 106/
108, applications (e.g., mobile applications), application
server/provider 110, or any combination of the above, to
manage the traffic in the system to satisfy data needs of the
client devices 150 (e.g., to satisfy application or any other
request including HTTP request). In one embodiment, the
traffic is managed by the host server 100 to satisfy data
requests made in response to explicit or non-explicit user
103 requests and/or device/application maintenance tasks.
The traffic can be managed such that network consumption,
for example, use of the cellular network is conserved for
effective and efficient bandwidth utilization. In addition, the
host server 100 can manage and coordinate such traffic in the
system such that use of device 150 side resources (e.g.,
including but not limited to battery power consumption,
radio use, processor/memory use) are optimized with a
general philosophy for resource conservation while still
optimizing performance and user experience.

For example, in context of battery conservation, the
device 150 can observe user activity (for example, by
observing user keystrokes, backlight status, or other signals
via one or more input mechanisms, etc.) and alter device 150
behaviors. The device 150 can also request the host server
100 to alter the behavior for network resource consumption
based on user activity or behavior.

In one embodiment, the traffic management for resource
conservation and/or mobile application offloading are per-
formed using a distributed system between the host server
100 and client device 150. The distributed system can
include proxy server and cache components on the server
side 100 and on the device/client side, for example, as shown
by the server cache 135 on the server 100 side and the local
cache 185 on the client 150 side.

Functions and techniques disclosed for context aware
traffic management and/or mobile application offloading for
resource conservation in networks (e.g., network 106 and/or
108) and devices 150, can reside in a distributed proxy and
cache system. The proxy and cache system can be distrib-

US 9,444,752 B2

11

uted between, and reside on, a given client device 150 in part
or in whole and/or host server 100 in part or in whole. The
distributed proxy and cache system are illustrated with
further reference to the example diagram shown in FIG. 1C.
Notably, in some embodiments of such systems, the host
server 100 can include or correspond to the host server 111
(FIG. 1A), the application server 110 can include or corre-
spond to the third-party servers 119 (FIG. 1A), and/or the
mobile device 150 can include or correspond to the mobile
device 101 (FIG. 1A).

In one embodiment, client devices 150 communicate with
the host server 100 and/or the application server 110 over
network 106, which can be a cellular network and/or a
broadband network. To facilitate overall traffic management
and/or signal optimization between devices 150 and various
application servers/content providers 110 to implement net-
work (bandwidth utilization) and device resource (e.g.,
battery consumption), the host server 100 can communicate
with the application server/providers 110 over the network
108, which can include the Internet (e.g., a broadband
network).

In general, the networks 106 and/or 108, over which the
client devices 150, the host server 100, and/or application
server 110 communicate, may be a cellular network, a
broadband network, a telephonic network, an open network,
such as the Internet, or a private network, such as an intranet
and/or the extranet, or any combination thereof. For
example, the Internet can provide file transfer, remote log in,
email, news, RSS, cloud-based services, instant messaging,
visual voicemail, push mail, VoIP, and other services
through any known or convenient protocol, such as, but is
not limited to the TCP/IP protocol, UDP, HTTP, DNS, FTP,
UPnP, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

The networks 106 and/or 108 can be any collection of
distinct networks operating wholly or partially in conjunc-
tion to provide connectivity to the client devices 150 and the
host server 100 and may appear as one or more networks to
the serviced systems and devices. In one embodiment,
communications to and from the client devices 150 can be
achieved by, an open network, such as the Internet, or a
private network, broadband network, such as an intranet
and/or the extranet. In one embodiment, communications
can be achieved by a secure communications protocol, such
as secure sockets layer (SSL), or transport layer security
(TLS).

In addition, communications can be achieved via one or
more networks, such as, but are not limited to, one or more
of WiMax, a Local Area Network (LAN), Wireless Local
Area Network (WLAN), a Personal area network (PAN), a
Campus area network (CAN), a Metropolitan area network
(MAN), a Wide area network (WAN), a Wireless wide area
network (WWAN), or any broadband network, and further
enabled with technologies such as, by way of example,
Global System for Mobile Communications (GSM), Per-
sonal Communications Service (PCS), Bluetooth, WiFi,
Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced,
pre-4G, LTE Advanced, mobile WiMax, WiMax 2, Wire-
lessMAN-Advanced networks, enhanced data rates for GSM
evolution (EDGE), General packet radio service (GPRS),
enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA,
UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as,
TCP/IP, SMS, MMS, extensible messaging and presence
protocol (XMPP), real time messaging protocol (RTMP),
instant messaging and presence protocol (IMPP), instant
messaging, USSD, IRC, or any other wireless data networks,
broadband networks, or messaging protocols.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 1C illustrates an example diagram of a proxy and
cache system distributed between the host server 100 and
device 150 which facilitates network traffic management
and/or signal optimization (including extended caching)
between the device 150 and an application server or content
provider 110, or other servers such as an ad server 120A,
promotional content server 120B, or an e-coupon server
120C for resource conservation and content caching The
proxy system distributed among the host server 100 and the
device 150 can further track alarms, timers or other triggers
implemented by applications on a device and resources used
by such alarms, timers, or other triggers to determine
associations using which the proxy system can manipulate
the alarms, timers or other triggers to occur at an optimal
time to reduce resource usage.

The distributed proxy and cache system can include, for
example, the proxy server 125 (e.g., remote proxy) and the
server cache, 135 components on the server side. The
server-side proxy 125 and cache 135 can, as illustrated,
reside internal to the host server 100. In addition, the proxy
server 125 and cache 135 on the server-side can be partially
or wholly external to the host server 100 and in communi-
cation via one or more of the networks 106 and 108. For
example, the proxy server 125 may be external to the host
server and the server cache 135 may be maintained at the
host server 100. Alternatively, the proxy server 125 may be
within the host server 100 while the server cache is external
to the host server 100. In addition, each of the proxy server
125 and the cache 135 may be partially internal to the host
server 100 and partially external to the host server 100. The
application server/content provider 110 can by any server
including third party servers or service/content providers
further including advertisement, promotional content, pub-
lication, or electronic coupon servers or services. Similarly,
separate advertisement servers 120A, promotional content
servers 120B, and/or e-Coupon servers 120C as application
servers or content providers are illustrated by way of
example.

The distributed system can also, include, in one embodi-
ment, client-side components, including by way of example
but not limitation, a local proxy 175 (e.g., a mobile client on
a mobile device) and/or a local cache 185, which can, as
illustrated, reside internal to the device 150 (e.g., a mobile
device).

In addition, the client-side proxy 175 and local cache 185
can be partially or wholly external to the device 150 and in
communication via one or more of the networks 106 and
108. For example, the local proxy 175 may be external to the
device 150 and the local cache 185 may be maintained at the
device 150. Alternatively, the local proxy 175 may be within
the device 150 while the local cache 185 is external to the
device 150. In addition, each of the proxy 175 and the cache
185 may be partially internal to the host server 100 and
partially external to the host server 100.

In one embodiment, the distributed system can include an
optional caching proxy server 199. The caching proxy server
199 can be a component which is operated by the application
server/content provider 110, the host server 100, or a net-
work service provider 112, and or any combination of the
above to facilitate network traffic management for network
and device resource conservation. Proxy server 199 can be
used, for example, for caching content to be provided to the
device 150, for example, from one or more of, the applica-
tion server/provider 110, host server 100, and/or a network
service provider 112. Content caching can also be entirely or
partially performed by the remote proxy 125 to satisfy
application requests or other data requests at the device 150.

US 9,444,752 B2

13

In context aware traffic management and optimization for
resource conservation in a network (e.g., cellular or other
wireless networks), characteristics of user activity/behavior
and/or application behavior at a mobile device (e.g., any
wireless device) 150 can be tracked by the local proxy 175
and communicated, over the network 106 to the proxy server
125 component in the host server 100, for example, as
connection metadata. The proxy server 125 which in turn is
coupled to the application server/provider 110 provides
content and data to satisfy requests made at the device 150.

In addition, the local proxy 175 can identify and retrieve
mobile device properties, including one or more of, battery
level, network that the device is registered on, radio state, or
whether the mobile device is being used (e.g., interacted
with by a user). In some instances, the local proxy 175 can
delay, expedite (prefetch), and/or modify data prior to trans-
mission to the proxy server 125, when appropriate.

The local database 185 can be included in the local proxy
175 or coupled to the local proxy 175 and can be queried for
a locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally
cached responses can be used by the local proxy 175 to
satisfy certain application requests of the mobile device 150,
by retrieving cached content stored in the cache storage 185,
when the cached content is still valid.

Similarly, the proxy server 125 of the host server 100 can
also delay, expedite, or modify data from the local proxy
prior to transmission to the content sources (e.g., the appli-
cation server/content provider 110). In addition, the proxy
server 125 uses device properties and connection metadata
to generate rules for satisfying request of applications on the
mobile device 150. The proxy server 125 can gather real
time traffic information about requests of applications for
later use in optimizing similar connections with the mobile
device 150 or other mobile devices.

In general, the local proxy 175 and the proxy server 125
are transparent to the multiple applications executing on the
mobile device. The local proxy 175 is generally transparent
to the operating system or platform of the mobile device and
may or may not be specific to device manufacturers. In some
instances, the local proxy 175 is optionally customizable in
part or in whole to be device specific. In some embodiments,
the local proxy 175 may be bundled into a wireless model,
a firewall, and/or a router.

In one embodiment, the host server 100 can in some
instances, utilize the store and forward functions of a short
message service center (SMSC) 114, such as that provided
by the network service provider, in communicating with the
device 150 in achieving network traffic management. Note
that 114 can also utilize any other type of alternative channel
including USSD or other network control mechanisms. The
host server 100 can forward content or HTTP responses to
the SMSC 114 such that it is automatically forwarded to the
device 150 if available, and for subsequent forwarding if the
device 150 is not currently available.

In general, the disclosed distributed proxy and cache
system allows optimization of network usage, for example,
by serving requests from the local cache 185, the local proxy
175 reduces the number of requests that need to be satisfied
over the network 106. Further, the local proxy 175 and the
proxy server 125 may filter irrelevant data from the com-
municated data. In addition, the local proxy 175 and the
proxy server 125 can also accumulate low priority data and
send it in batches to avoid the protocol overhead of sending
individual data fragments. The local proxy 175 and the
proxy server 125 can also compress or transcode the traffic,
reducing the amount of data sent over the network 106

5

10

20

25

30

35

40

45

50

55

60

65

14

and/or 108. The signaling traffic in the network 106 and/or
108 can be reduced, as the networks are now used less often
and the network traffic can be synchronized among indi-
vidual applications.

With respect to the battery life of the mobile device 150,
by serving application or content requests from the local
cache 185, the local proxy 175 can reduce the number of
times the radio module is powered up. The local proxy 175
and the proxy server 125 can work in conjunction to
accumulate low priority data and send it in batches to reduce
the number of times and/or amount of time when the radio
is powered up. The local proxy 175 can synchronize the
network use by performing the batched data transfer for all
connections simultaneously.

FIG. 1D illustrates an example diagram of the logical
architecture of a distributed proxy and cache system.

The distributed system can include, for example the
following components:

Client Side Proxy 175: a component installed in the
Smartphone, mobile device or wireless device 150 that
interfaces with device’s operating system, as well as with
data services and applications installed in the device. The
client side proxy 175 is typically compliant with and able to
operate with standard or state of the art networking proto-
cols.

The server side proxy 125 can include one or more servers
that can interface with third party application servers (e.g.,
199), mobile operator’s network (which can be proxy 199 or
an additional server that is not illustrated) and/or the client
side proxy 175, either directly or via an intermediary ele-
ment, such as SMSC 114. In general, the server side proxy
125 can be compliant with and is generally able to operate
with standard or state of the art networking protocols and/or
specifications for interacting with mobile network elements
and/or third party servers.

Reporting and Usage Analytics Server 174: The Report-
ing and Usage Analytics system or component 174 can
collect information from the client side 175 and/or the server
side 125 and provides the necessary tools for producing
reports and usage analytics can used for analyzing traffic and
signaling data. Such analytics can be used by the proxy
system in managing/reducing network traffic or by the
network operator in monitoring their networks for possible
improvements and enhancements. Note that the reporting
and usage analytics system/component 174 as illustrated,
may be a server separate from the server-side proxy 125, or
it may be a component of the server-side proxy 125, residing
partially or wholly therein.

Notably, in some embodiments of such systems, the
client-side proxy 175 can include or correspond to the local
proxy 105 (FIG. 1A), and the server-side proxy 125 can
include or correspond to the proxy server 113 (FIG. 1A).

FIG. 1E illustrates an example diagram showing the
architecture of client side components in a distributed proxy
and cache system. In the embodiment illustrated in FIG. 1E,
client side components include the mobile operating system
162 and mobile applications 163, collectively referred to as
the mobile OS and apps 165.

Other client side components include client side proxy
175, which can include software components or agents
installed on the mobile device that enables traffic optimiza-
tion and performs the related functionalities on the client
side. Components of the client side proxy 175 can operate
transparently for end users and applications 163. The client
side proxy 175 can be installed on mobile devices for
optimization to take place, and it can effectuate changes on
the data routes. Once data routing is modified, the client side

US 9,444,752 B2

15

proxy 175 can respond to application requests to service
providers or host servers, in addition to or instead of letting
those applications 163 access data network directly. In
general, applications 163 on the mobile device do not notice
that the client side proxy 175 is responding to their requests.
Some example components of the client side proxy 175 are
described as follows:

Device State Monitor 121: The device state monitor 121
can be responsible for identifying several states and metrics
in the device, such as network status, display status, battery
level, etc. (referred to as radio/battery/display information
161), such that the remaining components in the client side
proxy 175 can operate and make decisions according to
device state, acting in an optimal way in each state.

Extended Caching Optimization Engine 177: Similar to
what are mentioned with regard to the optimization engine
107 in FIG. 1A, the optimization engine 177 can perform,
either individually or in conjunction with Extended Caching
Optimization Manager 179 (FIG. 1F, discussed below), the
signal optimization techniques disclosed herein. In the
embodiment shown in FIG. 1E, the optimization engine 177
is coupled to the device state monitor 121 to receive appli-
cation activity, battery, network status, display or LCD status
(e.g., backlit status) as well as user selection, an adminis-
trator’s selection, and/or other suitable information in deter-
mining, for example, user inactivity, radio availability, pre-
diction of user activity (e.g., based on historical patterns),
and/or network health state (e.g., congestion). The optimi-
zation engine 177 can also communicate with the server-side
proxy 125 (FIG. 1F) for selectively caching one or more
operational data (e.g., requests and/or responses) of appli-
cations 163 (e.g., applications 102, FIG. 1A) to and from the
remote host server 111 in carrying out the extended caching
techniques discussed in, for example, FIG. 1A and FIGS.
4A-5B.

Traffic Recognizer 122: The traffic recognizer 122 ana-
lyzes all traffic between the wireless device applications 163
and their respective host servers in order to identify recur-
rent patterns. Supported transport protocols include, for
example, DNS, HTTP and HTTPS, such that traffic through
those ports is directed to the client side proxy 175. While
analyzing traffic, the client side proxy 175 can identify
recurring polling patterns which can be candidates to be
performed remotely by the server side proxy 125, and send
to the protocol optimizer 123.

Protocol Optimizer 123: The protocol optimizer 123 can
implement the logic of serving recurrent request from the
local cache 185 instead of allowing those request go over the
network to the service provider/application host server. One
is its tasks is to eliminate or minimize the need to send
requests to the network, positively affecting network con-
gestion and device battery life.

Local Cache 185: The local cache 185 can store responses
to recurrent requests, and can be used by the Protocol
Optimizer 123 to send responses to the applications 163.

Traffic Scheduler 124: The traffic scheduler 124 can
temporally move communications to optimize usage of
device resources by unifying keep-alive signaling so that
some or all of the different applications 163 can send
keep-alive messages at the same time (traffic pipelining).
Traffic scheduler 124 may also decide to delay transmission
of data that is not relevant at a given time (for example,
when the device is not actively used).

Policy Manager 120: The policy manager 120 can store
and enforce traffic optimization and reporting policies pro-
visioned by a Policy Management Server (PMS). At the
client side proxy 175 first start, traffic optimization and

20

25

30

35

40

45

16

reporting policies (policy profiles) that is to be enforced in
a particular device can be provisioned by the Policy Man-
agement Server.

Watch Dog 127: The watch dog 127 can monitor the client
side proxy 175 operating availability. In case the client side
proxy 175 is not working due to a failure or because it has
been disabled, the watchdog 127 can reset DNS routing rules
information and can restore original DNS settings for the
device to continue working until the client side proxy 175
service is restored.

Reporting Agent 126: The reporting agent 126 can gather
information about the events taking place in the device and
sends the information to the Reporting Server. Event details
are stored temporarily in the device and transferred to
reporting server only when the data channel state is active.
If the client side proxy 175 doesn’t send records within
twenty-four hours, the reporting agent 126 may attempt to
open the connection and send recorded entries or, in case
there are no entries in storage, an empty reporting packet. All
reporting settings are configured in the policy management
server.

Push Client 128: The push client 128 can be responsible
for the traffic to between the server side proxy 125 and the
client side proxy 175. The push client 128 can send out
service requests like content update requests and policy
update requests, and receives updates to those requests from
the server side proxy 125. In addition, push client 128 can
send data to a reporting server (e.g., the reporting and/or
usage analytics system which may be internal to or external
to the server side proxy 125).

The proxy server 199 has a wide variety of uses, from
speeding up a web server by caching repeated requests, to
caching web, DNS and other network lookups for a group of
clients sharing network resources. The proxy server 199 is
optional. The distributed proxy and cache system (125
and/or 175) allows for a flexible proxy configuration using
either the proxy 199, additional proxy(s) in operator’s net-
work, or integrating both proxies 199 and an operator’s or
other third-party’s proxy.

FIG. 1F illustrates a diagram of the example components
on the server side of the distributed proxy and cache system.

The server side 125 of the distributed system can include,
for example a relay server 142, which interacts with a traffic
harmonizer 144, a polling server 145 and/or a policy man-
agement server 143. Each of the various components can
communicate with the client side proxy 175, or other third
party (e.g., application server/service provider 110 and/or
other proxy 199) and/or a reporting and usage analytics
system. Some example components of the server side proxy
125 is described as follows:

Relay Server 142: The relay server 142 is the routing
agent in the distributed proxy architecture. The relay server
142 manages connections and communications with com-
ponents on the client-side proxy 175 installed on devices and
provides an administrative interface for reports, provision-
ing, platform setup, and so on.

Extended Caching Optimization Manager 179: Similar to
what are mentioned with regard to FIG. 1A, the optimization
manager 179 can perform, in conjunction with the optimi-
zation engine 177 (FIG. 1E), signal optimization techniques,
and more specifically, extended caching techniques with
configurable parameters as disclosed herein. In some
embodiments, such as the one shown in FIG. 1F, the
optimization manager 179 is coupled to the relay server 142
to receive relevant connection and communication informa-
tion for performing the extended caching. Among others, the

US 9,444,752 B2

17

optimization manager 179 is also coupled to server cache
135 in carrying out the extended caching.

Notification Server 141: The notification server 141 is a
module able to connect to an operator’s SMSC gateways and
deliver SMS notifications to the client-side proxy 175. SMS
notifications can be used when an IP link is not currently
active, in order to avoid the client-side proxy 175 from
activating a connection over the wireless data channel, thus
avoiding additional signaling traffic. However, if the IP
connection happens to be open for some other traffic, the
notification server 141 can use it for sending the notifica-
tions to the client-side proxy 175. A user database 146 can
store operational data including endpoint (MSISDN), orga-
nization and Notification server 141 gateway for each
resource (URIs or URLs).

Traffic Harmonizer 144: The traffic harmonizer 144 can
be responsible for communication between the client-side
proxy 175 and the polling server 145. The traffic harmonizer
144 connects to the polling server 145 directly or through the
data storage 130, and to the client over any open or propri-
etary protocol such as the 7TP, implemented for traffic
optimization. The traffic harmonizer 144 can be also respon-
sible for traffic pipelining on the server side: if there’s
cached content in the database for the same client, this can
be sent over to the client in one message.

Polling Server 145: The polling server 145 can poll third
party application servers on behalf of applications that are
being optimized). If a change occurs (i.e. new data available)
for an application, the polling server 145 can report to the
traffic harmonizer 144 which in turn sends a notification
message to the client-side proxy 175 for it to clear the cache
and allow application to poll application server directly.

Policy Management Server 143: The policy management
server (PMS) 143 allows administrators to configure and
store policies for the client-side proxies 175 (device clients).
It also allows administrators to notify the client-side proxies
175 about policy changes. Using the policy management
server 143, each operator can configure the policies to work
in the most efficient way for the unique characteristics of
each particular mobile operator’s network. In one embodi-
ment, PMS 143 may include a policy management server
database 147 for storing policies and other information.

Reporting and Usage Analytics Component: The Report-
ing and Usage Analytics component or system collects
information from the client side 175 and/or from the server
side 125, and provides the tools for producing reports and
usage analytics that operators can use for analyzing appli-
cation signaling and data consumption.

Most mobile applications regularly poll their application
servers to check for new data. Often there is no new data or
the content has not changed, so the exchange of data through
the mobile network is unnecessary. As the number of mobile
phones and their applications increase, the amount of this
needless polling grows. Since applications are not coordi-
nated and poll at different times and intervals, any given
phone may frequently generate signal traffic. This causes
multiple unnecessary radio activations, consuming power
and shortening battery life.

In one embodiment, the signaling optimizer reduces net-
work requests to a minimum by caching content in the client
and letting its own server poll for changes in the network.
When a mobile phone’s client side proxy (e.g., local proxy)
175 detects a recurring pattern for a resource, such as an
email application, its response content is stored locally in a
client cache so similar requests from that application get
their response from the local cache, rather than signaling the
network.

10

15

20

25

30

35

40

45

50

55

60

65

18

In another embodiment, systems and methods of intelli-
gent alarm tracker and resource manipulator can be used to
reduce network requests by consolidating or changing the
timing of requests such that use of resources including
network, battery, CPU, memory and the like can be reduced.

In some embodiments, features of the signaling optimizer
and the intelligent alarm tracker and resource manipulator
may be used together to obtain reduce resource usage by
mobile applications on a mobile device.

FIG. 1G illustrates an example diagram of a signaling
optimizer of the distributed proxy and cache system.

As an example, someone who typically gets only 10
emails a day may have phone’s email application poll the
network for new email every 15 minutes, or 96 times a day,
with around 90% or more of the polls resulting in the same
response: there are no new emails. The client side proxy
(e.g., local proxy) 175 can recognize this request—response
pattern, and intercepts the application’s poll requests, return-
ing the locally cached response of “no new emails”. This
way the device radio is not turned on by this particular
application, and the poll doesn’t use any network resources.
The server (e.g., host server 100, proxy server 125), located
in the network, can monitor the email application server on
behalf of the user’s email application. When new email is
available, the server can notify the user’s client side proxy
175 to not use the cached “no new emails” response for the
next poll request. Instead of going to the local client cache,
the email application polls its application server over the
network and receives the new content.

The signaling optimizer can be configured and managed
using different rule sets for different device types, user types,
wireless networks, and applications. Optimization rules can
be updated at any time, so the changes can be applied
immediately when an application upgrades or changes hap-
pen in the mobile network. The protocols that can be
optimized include, but are not limited to: HT'TP, HTTPS and
DNS.

FIG. 1H illustrates an example diagram of an example
client-server architecture of the distributed proxy and cache
system.

In the client-server architecture, the client side proxy 175
(e.g., local proxy) is residing on the mobile or client devices.
The client side proxy 175 can communicate both directly to
the Internet (usually via an operator proxy) and to the server
side proxy (e.g., proxy server) 125, or the host server 100.
The proxy server 125 communicates to the Internet and to
the operator’s SMSC 114.

As depicted, the client side proxy 175 can send a request
directly to the Internet. This can happen after requests have
been analyzed to detect optimizable patterns, for example.
The client side proxy 175 can, in one implementation, send
a request to the server (e.g., host server 100, proxy server
125), for example, to initiate server polling, to reports logs
or to get new configuration. The proxy server 125 can send
a request to the Internet to, for example, validate cached
content. In one implementation, the proxy server 125 can
send a request to the SMSC 114, for example, to send a
cache invalidate message or policy update message to the
client-side proxy 175.

In one implementation, the client side proxy 175 may not
maintain an open connection with the proxy server 125, but
may connect to the proxy server 125 only in case there’s a
need to start polling an origin server 110, to report logs or
to get new configuration. For signaling optimizer feature, the
proxy server 125 can notify the client side proxy 175 when
the content, that has been polled, has changed. The proxy
server 125 can send a request to invalidate cache in the client

US 9,444,752 B2

19

side proxy 125. When the application connects to that
particular origin server (e.g., content server 110) the next
time, it can first fetch the latest content from the proxy server
125 and then directly connect to the origin server 110. For
the policy enforcer and/or the network protector features, the
proxy server 125 can notify the client side proxy 175 when
there’s new configuration to be fetched from the server.
When the proxy server 125 needs to communicate with the
client side proxy 175, it can use a connection that is already
open for some other request. If the connection is not open,
the proxy server 125 can send a notification (e.g., SMS) to
the client side proxy 175.

FIG. 11 depicts an example diagram illustrating data flows
between example client side components in a distributed
proxy and cache system. Traffic from applications (e.g.,
Appl, App2, App3 to AppN), client side proxy (e.g., local
proxy) 175, IP Routing Tables (e.g., in the Android Oper-
ating System Layer), Network Access Layer and Wireless
Network are depicted.

In one implementation, non-optimized application traffic
flow, such as traffic from Appl, can completely bypass the
client side proxy 175 components and proceed directly
through the operating system layer (e.g., the Android OS
layer) and Network Access Layer to the wireless network.
Traffic that that is not optimized can include, but is not
limited to: rich media, like video and audio, as well as traffic
from networks and applications that has been configured to
bypass optimization and traffic pending optimization, and
the like. In one embodiment, all traffic can be configured to
bypass the client side/server side proxy.

In another implementation, optimized application traffic,
such as traffic from App2, can be redirected from the
application to the client side proxy 175. By default, this can
be traffic on ports 80 (HTTP) and 53 (DNS), and selected
traffic on port 443 (HTTPS), for example. However, traffic
to other ports can be configured to be directed to the client
side proxy.

In yet another implementation, traffic flow can be between
the client side proxy 175 and the origin servers (e.g., content
server 110) via the Internet and/or between the client side
proxy 175 and the server side proxy (e.g., proxy server) 125.

FIG. 2A depicts a block diagram illustrating an example
of client-side components in a distributed proxy and cache
system residing on a mobile device (e.g., wireless device)
250 that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, traffic
management, and/or signal optimization including extended
caching optimization. The client-side proxy (or local proxy
275) can further categorize mobile traffic and/or implement
delivery policies based on application behavior, content
priority, user activity, and/or user expectations.

The device 250, which can be a portable or mobile device
(e.g., any wireless device), such as a portable phone, gen-
erally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile
applications which may be proxy-unaware 210 or proxy-
aware 220. Note that the device 250 is specifically illustrated
in the example of FIG. 2 as a mobile device, such is not a
limitation and that device 250 may be any wireless, broad-
band, portable/mobile or non-portable device able to
receive, transmit signals to satisfy data requests over a
network including wired or wireless networks (e.g., WiFi,
cellular, Bluetooth, LAN, WAN, etc.).

The network interface 208 can be a networking module
that enables the device 250 to mediate data in a network with
an entity that is external to the host server 250, through any
known and/or convenient communications protocol sup-

10

15

20

25

30

35

40

45

50

55

60

65

20

ported by the host and the external entity. The network
interface 208 can include one or more of a network adaptor
card, a wireless network interface card (e.g., SMS interface,
WiFi interface, interfaces for various generations of mobile
communication standards including but not limited to 2G,
3G, 3.5G, 4G, LTE, etc.,), Bluetooth, or whether or not the
connection is via a router, an access point, a wireless router,
a switch, a multilayer switch, a protocol converter, a gate-
way, a bridge, a bridge router, a hub, a digital media receiver,
and/or a repeater.

Device 250 can further include, client-side components of
the distributed proxy and cache system which can include,
a local proxy 275 (e.g., a mobile client of a mobile device)
and a cache 285. In one embodiment, the local proxy 275
includes a user activity module 215, a proxy API 225, a
request/transaction manager 235, a caching policy manager
245 having an application protocol module 248, a traffic
shaping engine 255, and/or a connection manager 265. The
traffic shaping engine 255 may further include an alignment
module 256 and/or a batching module 257, the connection
manager 265 may further include a radio controller 266. The
request/transaction manager 235 can further include an
application behavior detector 236 and/or a prioritization
engine 241, the application behavior detector 236 may
further include a pattern detector 237 and/or and application
profile generator 239. Additional or less components/mod-
ules/engines can be included in the local proxy 275 and each
illustrated component.

As used herein, a “module,” “a manager,” a “handler,” a
“detector,” an “interface,” a “controller,” a “normalizer,” a
“generator,” an “invalidator,” or an “engine” includes a
general purpose, dedicated or shared processor and, typi-
cally, firmware or software modules that are executed by the
processor. Depending upon implementation-specific or other
considerations, the module, manager, handler, detector,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can include
general or special purpose hardware, firmware, or software
embodied in a computer-readable (storage) medium for
execution by the processor.

As used herein, a computer-readable medium or com-
puter-readable storage medium is intended to include all
mediums that are statutory (e.g., in the United States, under
35 U.S.C. §101), and to specifically exclude all mediums
that are non-statutory in nature to the extent that the exclu-
sion is necessary for a claim that includes the computer-
readable (storage) medium to be valid. Known statutory
computer-readable mediums include hardware (e.g., regis-
ters, random access memory (RAM), non-volatile (NV)
storage, to name a few), but may or may not be limited to
hardware.

In one embodiment, a portion of the distributed proxy and
cache system for network traffic management resides in or is
in communication with device 250, including local proxy
275 (mobile client) and/or cache 285. The local proxy 275
can provide an interface on the device 250 for users to access
device applications and services including email, IM, voice
mail, visual voicemail, feeds, Internet, games, productivity
tools, or other applications, etc.

The proxy 275 is generally application independent and
can be used by applications (e.g., both proxy-aware and
proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP connections to a remote server
(e.g., the server 100 in the examples of FIGS. 1B-1C and/or
server proxy 125/325 shown in the examples of FIG. 1B and

29 <

US 9,444,752 B2

21

FIG. 3A). In some instances, the local proxy 275 includes a
proxy API 225 which can be optionally used to interface
with proxy-aware applications 220 (or applications (e.g.,
mobile applications) on a mobile device (e.g., any wireless
device)).

The applications 210 and 220 can generally include any
user application, widgets, software, HT'TP-based applica-
tion, web browsers, video or other multimedia streaming or
downloading application, video games, social network
applications, email clients, RSS management applications,
application stores, document management applications, pro-
ductivity enhancement applications, etc. The applications
can be provided with the device OS, by the device manu-
facturer, by the network service provider, downloaded by the
user, or provided by others.

One embodiment of the local proxy 275 includes or is
coupled to a context API 206, as shown. The context API
206 may be a part of the operating system 204 or device
platform or independent of the operating system 204, as
illustrated. The operating system 204 can include any oper-
ating system including but not limited to, any previous,
current, and/or future versions/releases of, Windows Mobile,
i08S, Android, Symbian, Palm OS, Brew MP, Java 2 Micro
Edition (J2ME), Blackberry, etc.

The context API 206 may be a plug-in to the operating
system 204 or a particular client/application on the device
250. The context API 206 can detect signals indicative of
user or device activity, for example, sensing motion, gesture,
device location, changes in device location, device back-
light, keystrokes, clicks, activated touch screen, mouse click
or detection of other pointer devices. The context API 206
can be coupled to input devices or sensors on the device 250
to identify these signals. Such signals can generally include
input received in response to explicit user input at an input
device/mechanism at the device 250 and/or collected from
ambient signals/contextual cues detected at or in the vicinity
of the device 250 (e.g., light, motion, piezoelectric, etc.).

In one embodiment, the user activity module 215 interacts
with the context API 206 to identify, determine, infer, detect,
compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the
context API 206 can be aggregated by the user activity
module 215 to generate a profile for characteristics of user
activity. Such a profile can be generated by the user activity
module 215 with various temporal characteristics. For
instance, user activity profile can be generated in real-time
for a given instant to provide a view of what the user is doing
or not doing at a given time (e.g., defined by a time window,
in the last minute, in the last 30 seconds, etc.), a user activity
profile can also be generated for a ‘session’ defined by an
application or web page that describes the characteristics of
user behavior with respect to a specific task they are engaged
in on the device 250, or for a specific time period (e.g., for
the last 2 hours, for the last 5 hours).

Additionally, characteristic profiles can be generated by
the user activity module 215 to depict a historical trend for
user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).
Such historical profiles can also be used to deduce trends of
user behavior, for example, access frequency at different
times of day, trends for certain days of the week (weekends
or week days), user activity trends based on location data
(e.g., IP address, GPS, or cell tower coordinate data) or
changes in location data (e.g., user activity based on user
location, or user activity based on whether the user is on the
go, or traveling outside a home region, etc.) to obtain user
activity characteristics.

10

15

20

25

30

35

40

45

50

55

60

65

22

In one embodiment, user activity module 215 can detect
and track user activity with respect to applications, docu-
ments, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when
an application or window (e.g., a web browser or any other
type of application) has been exited, closed, minimized,
maximized, opened, moved into the foreground, or into the
background, multimedia content playback, etc.

In one embodiment, characteristics of the user activity on
the device 250 can be used to locally adjust behavior of the
device (e.g., mobile device or any wireless device) to
optimize its resource consumption such as battery/power
consumption and more generally, consumption of other
device resources including memory, storage, and processing
power. In one embodiment, the use of a radio on a device can
be adjusted based on characteristics of user behavior (e.g.,
by the radio controller 266 of the connection manager 265)
coupled to the user activity module 215. For example, the
radio controller 266 can turn the radio on or off, based on
characteristics of the user activity on the device 250. In
addition, the radio controller 266 can adjust the power mode
of the radio (e.g., to be in a higher power mode or lower
power mode) depending on characteristics of user activity.

In one embodiment, characteristics of the user activity on
device 250 can also be used to cause another device (e.g.,
other computers, a mobile device, a wireless device, or a
non-portable device) or server (e.g., host server 100 and 300
in the examples of FIGS. 1B-C and FIG. 3A) which can
communicate (e.g., via a cellular or other network) with the
device 250 to modify its communication frequency with the
device 250. The local proxy 275 can use the characteristics
information of user behavior determined by the user activity
module 215 to instruct the remote device as to how to
modulate its communication frequency (e.g., decreasing
communication frequency, such as data push frequency if
the user is idle, requesting that the remote device notify the
device 250 if new data, changed, data, or data of a certain
level of importance becomes available, etc.).

In one embodiment, the user activity module 215 can, in
response to determining that user activity characteristics
indicate that a user is active after a period of inactivity,
request that a remote device (e.g., server host server 100 and
300 in the examples of FIGS. 1B-C and FIG. 3A) send the
data that was buffered as a result of the previously decreased
communication frequency.

In addition, or in alternative, the local proxy 275 can
communicate the characteristics of user activity at the device
250 to the remote device (e.g., host server 100 and 300 in the
examples of FIGS. 1B-C and FIG. 3A) and the remote
device determines how to alter its own communication
frequency with the device 250 for network resource conser-
vation and conservation of device 250 resources.

One embodiment of the local proxy 275 further includes
a request/transaction manager 235, which can detect, iden-
tify, intercept, process, manage, data requests initiated on the
device 250, for example, by applications 210 and/or 220,
and/or directly/indirectly by a user request. The request/
transaction manager 235 can determine how and when to
process a given request or transaction, or a set of requests/
transactions, based on transaction characteristics.

The request/transaction manager 235 can prioritize
requests or transactions made by applications and/or users at
the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be deter-
mined by the request/transaction manager 235 by applying
a rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction,

US 9,444,752 B2

23

time criticality of the transaction, time criticality of the data
transmitted in the transaction, and/or time criticality or
importance of an application making the request.

In addition, transaction characteristics can also depend on
whether the transaction was a result of user-interaction or
other user-initiated action on the device (e.g., user interac-
tion with a application (e.g., a mobile application)). In
general, a time critical transaction can include a transaction
resulting from a user-initiated data transfer, and can be
prioritized as such. Transaction characteristics can also
depend on the amount of data that will be transferred or is
anticipated to be transferred as a result of the requested
transaction. For example, the connection manager 265, can
adjust the radio mode (e.g., high power or low power mode
via the radio controller 266) based on the amount of data that
will need to be transferred.

In addition, the radio controller 266/connection manager
265 can adjust the radio power mode (high or low) based on
time criticality/sensitivity of the transaction. The radio con-
troller 266 can trigger the use of high power radio mode
when a time-critical transaction (e.g., a transaction resulting
from a user-initiated data transfer, an application running in
the foreground, any other event meeting a certain criteria) is
initiated or detected.

In general, the priorities can be set by default, for
example, based on device platform, device manufacturer,
operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for
example, the Facebook application (e.g., a mobile applica-
tion) can set its own priorities for various transactions (e.g.,
a status update can be of higher priority than an add friend
request or a poke request, a message send request can be of
higher priority than a message delete request, for example),
an email client or IM chat client may have its own configu-
rations for priority. The prioritization engine 241 may
include set of rules for assigning priority.

The prioritization engine 241 can also track network
provider limitations or specifications on application or trans-
action priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in
whole be determined by user preferences, either explicit or
implicit. A user, can in general, set priorities at different tiers,
such as, specific priorities for sessions, or types, or appli-
cations (e.g., a browsing session, a gaming session, versus
an IM chat session, the user may set a gaming session to
always have higher priority than an IM chat session, which
may have higher priority than web-browsing session). A user
can set application-specific priorities, (e.g., a user may set
Facebook-related transactions to have a higher priority than
LinkedIn-related transactions), for specific transaction types
(e.g., for all send message requests across all applications to
have higher priority than message delete requests, for all
calendar-related events to have a high priority, etc.), and/or
for specific folders.

The prioritization engine 241 can track and resolve con-
flicts in priorities set by different entities. For example,
manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limi-
tations (e.g., set in default for a network service area,
geographic locale, set for a specific time of day, or set based
on service/fee type) may limit any user-specified settings
and/or application-set priorities. In some instances, a manual
synchronization request received from a user can override
some, most, or all priority settings in that the requested
synchronization is performed when requested, regardless of
the individually assigned priority or an overall priority
ranking for the requested action.

20

30

35

40

45

55

24

Priority can be specified and tracked internally in any
known and/or convenient manner, including but not limited
to, a binary representation, a multi-valued representation, a
graded representation and all are considered to be within the
scope of the disclosed technology.

TABLE 1
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not
(Un)read email Low possible
to sync
(Low if
possible)
Move message Low New email in deleted Low
Read more High items
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar High Any calendar change High
event Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no
Manual send/receive High changes
nothing
is sent)
IM status change Medium Social Network Medium
Status Updates
Auction outbid or High Severe Weather High
change notification Alerts
Weather Updates Low News Updates Low

Table 1 above shows, for illustration purposes, some
examples of transactions with examples of assigned priori-
ties in a binary representation scheme. Additional assign-
ments are possible for additional types of events, requests,
transactions, and as previously described, priority assign-
ments can be made at more or less granular levels, e.g., at the
session level or at the application level, etc.

As shown by way of example in the above table, in
general, lower priority requests/transactions can include,
updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/
transactions, can in some instances include, status updates,
new IM chat message, new email, calendar event update/
cancellation/deletion, an event in a mobile gaming session,
or other entertainment related events, a purchase confirma-
tion through a web purchase or online, request to load
additional or download content, contact book related events,
a transaction to change a device setting, location-aware or
location-based events/transactions, or any other events/re-
quest/transactions initiated by a user or where the user is
known to be, expected to be, or suspected to be waiting for
a response, etc.

Inbox pruning events (e.g., email, or any other types of
messages), are generally considered low priority and absent
other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to
remove old email or other content can be ‘piggy backed’
with other communications if the radio is not otherwise on,
at the time of a scheduled pruning event. For example, if the
user has preferences set to ‘keep messages for 7 days old,”
then instead of powering on the device radio to initiate a
message delete from the device 250 the moment that the
message has exceeded 7 days old, the message is deleted
when the radio is powered on next. If the radio is already on,
then pruning may occur as regularly scheduled.

US 9,444,752 B2

25

The request/transaction manager 235, can use the priori-
ties for requests (e.g., by the prioritization engine 241) to
manage outgoing traffic from the device 250 for resource
optimization (e.g., to utilize the device radio more efficiently
for battery conservation). For example, transactions/requests
below a certain priority ranking may not trigger use of the
radio on the device 250 if the radio is not already switched
on, as controlled by the connection manager 265. In contrast,
the radio controller 266 can turn on the radio such a request
can be sent when a request for a transaction is detected to be
over a certain priority level.

In one embodiment, priority assignments (such as that
determined by the local proxy 275 or another device/entity)
can be used cause a remote device to modify its communi-
cation with the frequency with the mobile device or wireless
device. For example, the remote device can be configured to
send notifications to the device 250 when data of higher
importance is available to be sent to the mobile device or
wireless device.

In one embodiment, transaction priority can be used in
conjunction with characteristics of user activity in shaping
or managing traffic, for example, by the traffic shaping
engine 255. For example, the traffic shaping engine 255 can,
in response to detecting that a user is dormant or inactive,
wait to send low priority transactions from the device 250,
for a period of time. In addition, the traffic shaping engine
255 can allow multiple low priority transactions to accumu-
late for batch transferring from the device 250 (e.g., via the
batching module 257). In one embodiment, the priorities can
be set, configured, or readjusted by a user. For example,
content depicted in Table I in the same or similar form can
be accessible in a user interface on the device 250 and for
example, used by the user to adjust or view the priorities.

The batching module 257 can initiate batch transfer based
on certain criteria. For example, batch transfer (e.g., of
multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number
of'low priority events have been detected, or after an amount
of time elapsed after the first of the low priority event was
initiated. In addition, the batching module 257 can initiate
batch transfer of the cumulated low priority events when a
higher priority event is initiated or detected at the device
250. Batch transfer can otherwise be initiated when radio use
is triggered for another reason (e.g., to receive data from a
remote device such as host server 100 or 300). In one
embodiment, an impending pruning event (pruning of an
inbox), or any other low priority events, can be executed
when a batch transfer occurs.

In general, the batching capability can be disabled or
enabled at the event/transaction level, application level, or
session level, based on any one or combination of the
following: user configuration, device limitations/settings,
manufacturer specification, network provider parameters/
limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be
initiated when an application/window/file is closed out,
exited, or moved into the background; users can optionally
be prompted before initiating a batch transfer; users can also
manually trigger batch transfers.

In one embodiment, the local proxy 275 locally adjusts
radio use on the device 250 by caching data in the cache 285.
When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio
controller 266 need not activate the radio to send the request
to a remote entity (e.g., the host server 100, 300, as shown
in FIG. 1B and FIG. 3A or a content provider/application
server such as the server/provider 110 shown in the

20

30

40

45

55

26
examples of FIG. 1B and FIG. 1C). As such, the local proxy
275 can use the local cache 285 and the cache policy
manager 245 to locally store data for satisfying data requests
to eliminate or reduce the use of the device radio for
conservation of network resources and device battery con-
sumption.

In leveraging the local cache, once the request/transaction
manager 225 intercepts a data request by an application on
the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also
determine whether the response is valid. When a valid
response is available in the local cache 285, the response can
be provided to the application on the device 250 without the
device 250 needing to access the cellular network or wire-
less broadband network.

If a valid response is not available, the local proxy 275 can
query a remote proxy (e.g., the server proxy 325 of FIG. 3A)
to determine whether a remotely stored response is valid. If
so, the remotely stored response (e.g., which may be stored
on the server cache 135 or optional caching server 199
shown in the example of FIG. 1C) can be provided to the
mobile device, possibly without the mobile device 250
needing to access the cellular network, thus relieving con-
sumption of network resources.

If a valid cache response is not available, or if cache
responses are unavailable for the intercepted data request,
the local proxy 275, for example, the caching policy man-
ager 245, can send the data request to a remote proxy (e.g.,
server proxy 325 of FIG. 3A) which forwards the data
request to a content source (e.g., application server/content
provider 110 of FIG. 1B) and a response from the content
source can be provided through the remote proxy, as will be
further described in the description associated with the
example host server 300 of FIG. 3A. The cache policy
manager 245 can manage or process requests that use a
variety of protocols, including but not limited to HTTP,
HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync. The
caching policy manager 245 can locally store responses for
data requests in the local database 285 as cache entries, for
subsequent use in satisfying same or similar data requests.

The caching policy manager 245 can request that the
remote proxy monitor responses for the data request and the
remote proxy can notify the device 250 when an unexpected
response to the data request is detected. In such an event, the
cache policy manager 245 can erase or replace the locally
stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, addi-
tional data, etc.) to the data request. In one embodiment, the
caching policy manager 245 is able to detect or identify the
protocol used for a specific request, including but not limited
to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or
ActiveSync. In one embodiment, application specific han-
dlers (e.g., via the application protocol module 246 of the
caching policy manager 245) on the local proxy 275 allows
for optimization of any protocol that can be port mapped to
a handler in the distributed proxy (e.g., port mapped on the
proxy server 325 in the example of FIG. 3A).

In one embodiment, the local proxy 275 notifies the
remote proxy such that the remote proxy can monitor
responses received for the data request from the content
source for changed results prior to returning the result to the
device 250, for example, when the data request to the
content source has yielded same results to be returned to the
mobile device. In general, the local proxy 275 can simulate
application server responses for applications on the device
250, using locally cached content. This can prevent utiliza-
tion of the cellular network for transactions where new/

US 9,444,752 B2

27

changed data is not available, thus freeing up network
resources and preventing network congestion.

In one embodiment, the local proxy 275 includes an
application behavior detector 236 to track, detect, observe,
monitor, applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device
250. Application behaviors, or patterns in detected behaviors
(e.g., via the pattern detector 237) of one or more applica-
tions accessed on the device 250 can be used by the local
proxy 275 to optimize traffic in a wireless network needed
to satisfy the data needs of these applications.

For example, based on detected behavior of multiple
applications, the traffic shaping engine 255 can align content
requests made by at least some of the applications over the
network (wireless network) (e.g., via the alignment module
256). The alignment module 256 can delay or expedite some
earlier received requests to achieve alignment. When
requests are aligned, the traffic shaping engine 255 can
utilize the connection manager to poll over the network to
satisfy application data requests. Content requests for mul-
tiple applications can be aligned based on behavior patterns
or rules/settings including, for example, content types
requested by the multiple applications (audio, video, text,
etc.), device (e.g., mobile or wireless device) parameters,
and/or network parameters/traffic conditions, network ser-
vice provider constraints/specifications, etc.

In one embodiment, the pattern detector 237 can detect
recurrences in application requests made by the multiple
applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that cer-
tain applications, as a background process, poll an applica-
tion server regularly, at certain times of day, on certain days
of the week, periodically in a predictable fashion, with a
certain frequency, with a certain frequency in response to a
certain type of event, in response to a certain type user query,
frequency that requested content is the same, frequency with
which a same request is made, interval between requests,
applications making a request, or any combination of the
above, for example.

Such recurrences can be used by traffic shaping engine
255 to offload polling of content from a content source (e.g.,
from an application server/content provider 110 of FIG. 1A)
that would result from the application requests that would be
performed at the mobile device or wireless device 250 to be
performed instead, by a proxy server (e.g., proxy server 125
of FIG. 1C or proxy server 325 of FIG. 3A) remote from the
device 250. Traffic shaping engine 255 can decide to offload
the polling when the recurrences match a rule. For example,
there are multiple occurrences or requests for the same
resource that have exactly the same content, or returned
value, or based on detection of repeatable time periods
between requests and responses such as a resource that is
requested at specific times during the day. The offloading of
the polling can decrease the amount of bandwidth consump-
tion needed by the mobile device 250 to establish a wireless
(cellular or other wireless broadband) connection with the
content source for repetitive content polls.

As a result of the offloading of the polling, locally cached
content stored in the local cache 285 can be provided to
satisfy data requests at the device 250, when content change
is not detected in the polling of the content sources. As such,
when data has not changed, application data needs can be
satisfied without needing to enable radio use or occupying
cellular bandwidth in a wireless network. When data has
changed and/or new data has been received, the remote

20

35

40

45

28

entity to which polling is offloaded, can notify the device
250. The remote entity may be the host server 300 as shown
in the example of FIG. 3A.

In one embodiment, the local proxy 275 can mitigate the
need/use of periodic keep-alive messages (heartbeat mes-
sages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental
impacts on mobile device battery life. The connection man-
ager 265 in the local proxy (e.g., the heartbeat manager 267)
can detect, identify, and intercept any or all heartbeat (keep-
alive) messages being sent from applications.

The heartbeat manager 267 can prevent any or all of these
heartbeat messages from being sent over the cellular, or
other network, and instead rely on the server component of
the distributed proxy system (e.g., shown in FIG. 1C) to
generate and send the heartbeat messages to maintain a
connection with the backend (e.g., application server/pro-
vider 110 in the example of FIG. 1A).

The local proxy 275 generally represents any one or a
portion of the functions described for the individual man-
agers, modules, and/or engines. The local proxy 275 and
device 250 can include additional or less components; more
or less functions can be included, in whole or in part, without
deviating from the novel art of the disclosure.

FIG. 2B depicts a block diagram illustrating a further
example of components in the cache system shown in the
example of FIG. 2A which is capable of caching and
adapting caching strategies for mobile application behavior
and/or network conditions.

In one embodiment, the caching policy manager 245
includes a metadata generator 203, a cache look-up engine
205, a cache appropriateness decision engine 246, a poll
schedule generator 247, an application protocol module 248,
a cache or connect selection engine 249 and/or a local cache
invalidator 244. The cache appropriateness decision engine
246 can further include a timing predictor 246a, a content
predictor 2465, a request analyzer 246¢, and/or a response
analyzer 246d, and the cache or connect selection engine
249 includes a response scheduler 249a4. The metadata
generator 203 and/or the cache look-up engine 205 are
coupled to the cache 285 (or local cache) for modification or
addition to cache entries or querying thereof.

The cache look-up engine 205 may further include an ID
or URI filter 2054, the local cache invalidator 244 may
further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine
247q and/or a time adjustment engine 2475. One embodi-
ment of caching policy manager 245 includes an application
cache policy repository 243. In one embodiment, the appli-
cation behavior detector 236 includes a pattern detector 237,
a poll interval detector 238, an application profile generator
239, and/or a priority engine 241. The poll interval detector
238 may further include a long poll detector 2384 having a
response/request tracking engine 238b. The poll interval
detector 238 may further include a long poll hunting detector
238c. The application profile generator 239 can further
include a response delay interval tracker 239a.

The pattern detector 237, application profile generator
239, and the priority engine 241 were also described in
association with the description of the pattern detector
shown in the example of FIG. 2A. One embodiment further
includes an application profile repository 242 which can be
used by the local proxy 275 to store information or metadata
regarding application profiles (e.g., behavior, patterns, type
of HTTP requests, etc.)

The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content

US 9,444,752 B2

29

source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250
interacts and has content that may be suitable for caching.
For example, the decision engine 246 can use information
about a request and/or a response received for the request
initiated at the mobile device 250 to determine cacheability,
potential cacheability, or non-cacheability. In some
instances, the decision engine 246 can initially verify
whether a request is directed to a blacklisted destination or
whether the request itself originates from a blacklisted client
or application. If so, additional processing and analysis may
not be performed by the decision engine 246 and the request
may be allowed to be sent over the air to the server to satisfy
the request. The black listed destinations or applications/
clients (e.g., mobile applications) can be maintained locally
in the local proxy (e.g., in the application profile repository
242) or remotely (e.g., in the proxy server 325 or another
entity).

In one embodiment, the decision engine 246, for example,
via the request analyzer 246c¢, collects information about an
application or client request generated at the mobile device
250. The request information can include request character-
istics information including, for example, request method.
For example, the request method can indicate the type of
HTTP request generated by the mobile application or client.
In one embodiment, response to a request can be identified
as cacheable or potentially cacheable if the request method
is a GET request or POST request. Other types of requests
(e.g., OPTIONS, HEAD, PUT, DELETE, TRACE, or CON-
NECT) may or may not be cached. In general, HTTP
requests with uncacheable request methods will not be
cached.

Request characteristics information can further include
information regarding request size, for example. Responses
to requests (e.g., HTTP requests) with body size exceeding
a certain size will not be cached. For example, cacheability
can be determined if the information about the request
indicates that a request body size of the request does not
exceed a certain size. In some instances, the maximum
cacheable request body size can be set to 8092 bytes. In
other instances, different values may be used, dependent on
network capacity or network operator specific settings, for
example.

In some instances, content from a given application
server/content provider (e.g., the server/content provider 110
of FIG. 1C) is determined to be suitable for caching based
on a set of criteria, for example, criteria specifying time
criticality of the content that is being requested from the
content source. In one embodiment, the local proxy (e.g., the
local proxy 175 or 275 of FIG. 1C and FIG. 2A) applies a
selection criteria to store the content from the host server
which is requested by an application as cached elements in
a local cache on the mobile device to satisfy subsequent
requests made by the application.

The cache appropriateness decision engine 246, further
based on detected patterns of requests sent from the mobile
device 250 (e.g., by a mobile application or other types of
clients on the device 250) and/or patterns of received
responses, can detect predictability in requests and/or
responses. For example, the request characteristics informa-
tion collected by the decision engine 246, (e.g., the request
analyzer 246¢) can further include periodicity information
between a request and other requests generated by a same
client on the mobile device or other requests directed to the
same host (e.g., with similar or same identifier parameters).

Periodicity can be detected, by the decision engine 246 or
the request analyzer 246¢, when the request and the other

20

25

30

40

45

30

requests generated by the same client occur at a fixed rate or
nearly fixed rate, or at a dynamic rate with some identifiable
or partially or wholly reproducible changing pattern. If the
requests are made with some identifiable pattern (e.g.,
regular intervals, intervals having a detectable pattern, or
trend (e.g., increasing, decreasing, constant, etc.) the timing
predictor 246a can determine that the requests made by a
given application on a device is predictable and identify it to
be potentially appropriate for caching, at least from a timing
standpoint.

An identifiable pattern or trend can generally include any
application or client behavior which may be simulated either
locally, for example, on the local proxy 275 on the mobile
device 250 or simulated remotely, for example, by the proxy
server 325 on the host 300, or a combination of local and
remote simulation to emulate application behavior.

In one embodiment, the decision engine 246, for example,
via the response analyzer 246d, can collect information
about a response to an application or client request generated
at the mobile device 250. The response is typically received
from a server or the host of the application (e.g., mobile
application) or client which sent the request at the mobile
device 250. In some instances, the mobile client or appli-
cation can be the mobile version of an application (e.g.,
social networking, search, travel management, voicemail,
contact manager, email) or a web site accessed via a web
browser or via a desktop client.

For example, response characteristics information can
include an indication of whether transfer encoding or
chunked transfer encoding is used in sending the response.
In some instances, responses to HTTP requests with transfer
encoding or chunked transfer encoding are not cached, and
therefore are also removed from further analysis. The ratio-
nale here is that chunked responses are usually large and
non-optimal for caching, since the processing of these
transactions may likely slow down the overall performance.
Therefore, in one embodiment, cacheability or potential for
cacheability can be determined when transfer encoding is
not used in sending the response.

In addition, the response characteristics information can
include an associated status code of the response which can
be identified by the response analyzer 246d. In some
instances, HTTP responses with uncacheable status codes
are typically not cached. The response analyzer 2464 can
extract the status code from the response and determine
whether it matches a status code which is cacheable or
uncacheable. Some cacheable status codes include by way of
example: 200—OK, 301—Redirect, 302—Found, 303—
See other, 304—Not Modified, 307 Temporary Redirect, or
500—Internal server error. Some uncacheable status codes
can include, for example, 403—Forbidden or 404—Not
found.

In one embodiment, cacheability or potential for cache-
ability can be determined if the information about the
response does not indicate an uncacheable status code or
indicates a cacheable status code. If the response analyzer
246d detects an uncacheable status code associated with a
given response, the specific transaction (request/response
pair) may be eliminated from further processing and deter-
mined to be uncacheable on a temporary basis, a semi-
permanent, or a permanent basis. If the status code indicates
cacheability, the transaction (e.g., request and/or response
pair) may be subject to further processing and analysis to
confirm cacheability.

Response characteristics information can also include
response size information. In general, responses can be
cached locally at the mobile device 250 if the responses do

US 9,444,752 B2

31

not exceed a certain size. In some instances, the default
maximum cached response size is set to 115 KB. In other
instances, the max cacheable response size may be different
and/or dynamically adjusted based on operating conditions,
network conditions, network capacity, user preferences,
network operator requirements, or other application-spe-
cific, user specific, and/or device-specific reasons. In one
embodiment, the response analyzer 246d can identify the
size of the response, and cacheability or potential for cache-
ability can be determined if a given threshold or max value
is not exceeded by the response size.

Furthermore, response characteristics information can
include response body information for the response to the
request and other response to other requests generated by a
same client on the mobile device, or directed to a same
content host or application server. The response body infor-
mation for the response and the other responses can be
compared, for example, by the response analyzer 2464, to
prevent the caching of dynamic content (or responses with
content that changes frequently and cannot be efficiently
served with cache entries, such as financial data, stock
quotes, news feeds, real-time sporting event activities, etc.),
such as content that would no longer be relevant or up-to-
date if served from cached entries.

The cache appropriateness decision engine 246 (e.g., the
content predictor 2465) can definitively identify repeatabil-
ity or identify indications of repeatability, potential repeat-
ability, or predictability in responses received from a content
source (e.g., the content host/application server 110 shown
in the example of FIG. 1C). Repeatability can be detected
by, for example, tracking at least two responses received
from the content source and determines if the two responses
are the same. For example, cacheability can be determined,
by the response analyzer 2464, if the response body infor-
mation for the response and the other responses sent by the
same mobile client or directed to the same host/server are
same or substantially the same. The two responses may or
may not be responses sent in response to consecutive
requests. In one embodiment, hash values of the responses
received for requests from a given application are used to
determine repeatability of content (with or without heuris-
tics) for the application in general and/or for the specific
request. Additional same responses may be required for
some applications or under certain circumstances.

Repeatability in received content need not be 100%
ascertained. For example, responses can be determined to be
repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or
certain percentage of same/similar responses can be tracked
over a select period of time, set by default or set based on
the application generating the requests (e.g., whether the
application is highly dynamic with constant updates or less
dynamic with infrequent updates). Any indicated predict-
ability or repeatability, or possible repeatability, can be
utilized by the distributed system in caching content to be
provided to a requesting application or client on the mobile
device 250.

In one embodiment, for a long poll type request, the local
proxy 175 can begin to cache responses on a third request
when the response delay times for the first two responses are
the same, substantially the same, or detected to be increasing
in intervals. In general, the received responses for the first
two responses should be the same, and upon verifying that
the third response received for the third request is the same
(e.g., if RO=R1=R2), the third response can be locally
cached on the mobile device. Less or more same responses
may be required to begin caching, depending on the type of

35

40

45

55

32

application, type of data, type of content, user preferences,
or carrier/network operator specifications.

Increasing response delays with same responses for long
polls can indicate a hunting period (e.g., a period in which
the application/client on the mobile device is seeking the
longest time between a request and response that a given
network will allow), as detected by the long poll hunting
detector 238¢ of the application behavior detector 236.

An example can be described below using TO, T1, T2,
where T indicates the delay time between when a request is
sent and when a response (e.g., the response header) is
detected/received for consecutive requests:

TO=Response0(t)-Request0(t)=180 s. (+/- tolerance)

T1=Responsel (t)-Request1(t)=240 s. (+/- tolerance)

T2=Response2(t)-Request2(t)=500 s. (+/- tolerance)

In the example timing sequence shown above,
TO<T1<T2, this may indicate a hunting pattern for a long
poll when network timeout has not yet been reached or
exceeded. Furthermore, if the responses RO, R1, and R2
received for the three requests are the same, R2 can be
cached. In this example, R2 is cached during the long poll
hunting period without waiting for the long poll to settle,
thus expediting response caching (e.g., this is optional
accelerated caching behavior which can be implemented for
all or select applications).

As such, the local proxy 275 can specify information that
can be extracted from the timing sequence shown above
(e.g., polling schedule, polling interval, polling type) to the
proxy server and begin caching and to request the proxy
server to begin polling and monitoring the source (e.g., using
any of TO, T1, T2 as polling intervals but typically T2, or the
largest detected interval without timing out, and for which
responses from the source is received will be sent to the
proxy server 325 of FIG. 3A for use in polling the content
source (e.g., application server/service provider 310)).

However, if the time intervals are detected to be getting
shorter, the application (e.g., mobile application)/client may
still be hunting for a time interval for which a response can
be reliably received from the content source (e.g., applica-
tion/server server/provider 110 or 310), and as such caching
typically should not begin until the request/response inter-
vals indicate the same time interval or an increasing time
interval, for example, for a long poll type request.

An example of handling a detected decreasing delay can
be described below using TO, T1, T2, T3, and T4 where T
indicates the delay time between when a request is sent and
when a response (e.g., the response header) is detected/
received for consecutive requests:

TO=Response0(t)-Request0(t)=160 s. (+/- tolerance)

T1=Responsel (t)-Request1(t)=240 s. (+/- tolerance)

T2=Response2(t)-Request2(t)=500 s. (+/- tolerance)

T3=Time out at 700 s. (+/- tolerance)

T4=Response4(t)-Requestd(t)=600 (+/- tolerance)

If a pattern for response delays T1<T2<T3>T4 is
detected, as shown in the above timing sequence (e.g.,
detected by the long poll hunting detector 238¢ of the
application behavior detector 236), it can be determined that
T3 likely exceeded the network time out during a long poll
hunting period. In Request 3, a response likely was not
received since the connection was terminated by the net-
work, application, server, or other reason before a response
was sent or available. On Request 4 (after T4), if a response
(e.g., Response 4) is detected or received, the local proxy
275 can then use the response for caching (if the content
repeatability condition is met). The local proxy can also use
T4 as the poll interval in the polling schedule set for the
proxy server to monitor/poll the content source.

US 9,444,752 B2

33

Note that the above description shows that caching can
begin while long polls are in hunting mode in the event of
detecting increasing response delays, as long as responses
are received and not timed out for a given request. This can
be referred to as the optional accelerated caching during
long poll hunting. Caching can also begin after the hunting
mode (e.g., after the poll requests have settled to a constant
or near constant delay value) has completed. Note that
hunting may or may not occur for long polls and when
hunting occurs; the proxy 275 can generally detect this and
determine whether to begin to cache during the hunting
period (increasing intervals with same responses) or wait
until the hunt settles to a stable value.

In one embodiment, the timing predictor 246a of the
cache appropriateness decision engine 246 can track timing
of responses received from outgoing requests from an appli-
cation (e.g., mobile application) or client to detect any
identifiable patterns which can be partially wholly repro-
ducible, such that locally cached responses can be provided
to the requesting client on the mobile device 250 in a manner
that simulates content source (e.g., application server/con-
tent provider 110 or 310) behavior. For example, the manner
in which (e.g., from a timing standpoint) responses or
content would be delivered to the requesting application/
client on the device 250. This ensures preservation of user
experience when responses to application or mobile client
requests are served from a local and/or remote cache instead
of being retrieved/received directly from the content source
(e.g., application, content provider 110 or 310).

In one embodiment, the decision engine 246 or the timing
predictor 246a determines the timing characteristics a given
application (e.g., mobile application) or client from, for
example, the request/response tracking engine 2384 and/or
the application profile generator 239 (e.g., the response
delay interval tracker 2394). Using the timing characteris-
tics, the timing predictor 246a determines whether the
content received in response to the requests are suitable or
are potentially suitable for caching. For example, poll
request intervals between two consecutive requests from a
given application can be used to determine whether request
intervals are repeatable (e.g., constant, near constant,
increasing with a pattern, decreasing with a pattern, etc.) and
can be predicted and thus reproduced at least some of the
times either exactly or approximated within a tolerance
level.

In some instances, the timing characteristics of a given
request type for a specific application, for multiple requests
of an application, or for multiple applications can be stored
in the application profile repository 242. The application
profile repository 242 can generally store any type of
information or metadata regarding application request/re-
sponse characteristics including timing patterns, timing
repeatability, content repeatability, etc.

The application profile repository 242 can also store
metadata indicating the type of request used by a given
application (e.g., long polls, long-held HTTP requests,
HTTP streaming, push, COMET push, etc.) Application
profiles indicating request type by applications can be used
when subsequent same/similar requests are detected, or
when requests are detected from an application which has
already been categorized. In this manner, timing character-
istics for the given request type or for requests of a specific
application which has been tracked and/or analyzed, need
not be reanalyzed.

Application profiles can be associated with a time-to-live
(e.g., or a default expiration time). The use of an expiration
time for application profiles, or for various aspects of an

10

15

20

25

30

35

40

45

50

55

60

65

34

application or request’s profile can be used on a case by case
basis. The time-to-live or actual expiration time of applica-
tion profile entries can be set to a default value or determined
individually, or a combination thereof. Application profiles
can also be specific to wireless networks, physical networks,
network operators, or specific carriers.

One embodiment includes an application blacklist man-
ager 201. The application blacklist manager 201 can be
coupled to the application cache policy repository 243 and
can be partially or wholly internal to local proxy or the
caching policy manager 245. Similarly, the blacklist man-
ager 201 can be partially or wholly internal to local proxy or
the application behavior detector 236. The blacklist manager
201 can aggregate, track, update, manage, adjust, or dynami-
cally monitor a list of destinations of servers/host that are
‘blacklisted,” or identified as not cached, on a permanent or
temporary basis. The blacklist of destinations, when identi-
fied in a request, can potentially be used to allow the request
to be sent over the (cellular) network for servicing. Addi-
tional processing on the request may not be performed since
it is detected to be directed to a blacklisted destination.

Blacklisted destinations can be identified in the applica-
tion cache policy repository 243 by address identifiers
including specific URIs or patterns of identifiers including
URI patterns. In general, blacklisted destinations can be set
by or modified for any reason by any party including the user
(owner/user of mobile device 250), operating system/mobile
platform of device 250, the destination itself, network opera-
tor (of cellular network), Internet service provider, other
third parties, or according to a list of destinations for
applications known to be uncacheable/not suited for cach-
ing. Some entries in the blacklisted destinations may include
destinations aggregated based on the analysis or processing
performed by the local proxy (e.g., cache appropriateness
decision engine 246).

For example, applications or mobile clients on the mobile
device for which responses have been identified as non-
suitable for caching can be added to the blacklist Their
corresponding hosts/servers may be added in addition to or
in lieu of an identification of the requesting application/
client on the mobile device 250. Some or all of such clients
identified by the proxy system can be added to the blacklist.
For example, for all application clients or applications that
are temporarily identified as not being suitable for caching,
only those with certain detected characteristics (based on
timing, periodicity, frequency of response content change,
content predictability, size, etc.) can be blacklisted.

The blacklisted entries may include a list of requesting
applications or requesting clients on the mobile device
(rather than destinations) such that, when a request is
detected from a given application or given client, it may be
sent through the network for a response, since responses for
blacklisted clients/applications are in most circumstances
not cached.

A given application profile may also be treated or pro-
cessed differently (e.g., different behavior of the local proxy
275 and the remote proxy 325) depending on the mobile
account associated with a mobile device from which the
application is being accessed. For example, a higher paying
account, or a premier account may allow more frequent
access of the wireless network or higher bandwidth allow-
ance thus affecting the caching policies implemented
between the local proxy 275 and proxy server 325 with an
emphasis on better performance compared to conservation
of resources. A given application profile may also be treated

US 9,444,752 B2

35

or processed differently under different wireless network
conditions (e.g., based on congestion or network outage,
etc.).

Note that cache appropriateness can be determined,
tracked, and managed for multiple clients or applications on
the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated
by a given client or application on the mobile device 250.
The caching policy manager 245, along with the timing
predictor 246a and/or the content predictor 2465 which
heuristically determines or estimates predictability or poten-
tial predictability, can track, manage and store cacheability
information for various application or various requests for a
given application. Cacheability information may also
include conditions (e.g., an application can be cached at
certain times of the day, or certain days of the week, or
certain requests of a given application can be cached, or all
requests with a given destination address can be cached)
under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine
246 and stored and/or updated when appropriate in the
application cache policy repository 243 coupled to the cache
appropriateness decision engine 246.

The information in the application cache policy repository
243 regarding cacheability of requests, applications, and/or
associated conditions can be used later on when same
requests are detected. In this manner, the decision engine
246 and/or the timing and content predictors 246a/b need
not track and reanalyze request/response timing and content
characteristics to make an assessment regarding cacheabil-
ity. In addition, the cacheability information can in some
instances be shared with local proxies of other mobile
devices by way of direct communication or via the host
server (e.g., proxy server 325 of host server 300).

For example, cacheability information detected by the
local proxy 275 on various mobile devices can be sent to a
remote host server or a proxy server 325 on the host server
(e.g., host server 300 or proxy server 325 shown in the
example of FIG. 3A, host 100 and proxy server 125 in the
example of FIGS. 1B-C). The remote host or proxy server
can then distribute the information regarding application-
specific, request-specific cacheability information and/or
any associated conditions to various mobile devices or their
local proxies in a wireless network or across multiple
wireless networks (same service provider or multiple wire-
less service providers) for their use.

In general, the selection criteria for caching can further
include, by way of example but not limitation, the state of
the mobile device indicating whether the mobile device is
active or inactive, network conditions, and/or radio coverage
statistics. The cache appropriateness decision engine 246
can in any one or any combination of the criteria, and in any
order, identifying sources for which caching may be suit-
able.

Once application servers/content providers having iden-
tified or detected content that is potentially suitable for local
caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received
from the identified sources by storing content received from
the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIG. 1B1C
and FIG. 2A, respectively) on the mobile device 250.

The response can be stored in the cache 285 (e.g., also
referred as the local cache) as a cache entry. In addition to
the response to a request, the cached entry can include
response metadata having additional information regarding
caching of the response. The metadata may be generated by

10

15

20

25

30

35

40

45

50

55

60

65

36

the metadata generator 203 and can include, for example,
timing data such as the access time of the cache entry or
creation time of the cache entry. Metadata can include
additional information, such as any information suited for
use in determining whether the response stored as the cached
entry is used to satisfy the subsequent response. For
example, metadata information can further include, request
timing history (e.g., including request time, request start
time, request end time), hash of the request and/or response,
time intervals or changes in time intervals, etc.

The cache entry is typically stored in the cache 285 in
association with a time-to-live (TTL), which for example
may be assigned or determined by the TTL manager 244a of
the cache invalidator 244. The time-to-live of a cache entry
is the amount of time the entry is persisted in the cache 285
regardless of whether the response is still valid or relevant
for a given request or client/application on the mobile device
250. For example, if the time-to-live of a given cache entry
is set to 12 hours, the cache entry is purged, removed, or
otherwise indicated as having exceeded the time-to-live,
even if the response body contained in the cache entry is still
current and applicable for the associated request.

A default time-to-live can be automatically used for all
entries unless otherwise specified (e.g., by the TTL manager
244a), or each cache entry can be created with its individual
TTL (e.g., determined by the TTL manager 244a based on
various dynamic or static criteria). Note that each entry can
have a single time-to-live associated with both the response
data and any associated metadata. In some instances, the
associated metadata may have a different time-to-live (e.g.,
a longer time-to-live) than the response data.

The content source having content for caching can, in
addition or in alternate, be identified to a proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIGS.
1B-1C and FIG. 3A, respectively) remote from and in
wireless communication with the mobile device 250 such
that the proxy server can monitor the content source (e.g.,
application server/content provider 110) for new or changed
data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIGS. 1B-1C and FIG. 2A, respectively) can identify
to the proxy server that content received from a specific
application server/content provider is being stored as cached
elements in the local cache 285.

Once content has been locally cached, the cache policy
manager 245, upon receiving future polling requests to
contact the application server/content host (e.g., 110 or 310),
can retrieve the cached elements from the local cache to
respond to the polling request made at the mobile device 250
such that a radio of the mobile device is not activated to
service the polling request. For example, the cache look-up
engine 205 can query the cache 285 to identify the response
to be served to a response. The response can be served from
the cache in response to identifying a matching cache entry
and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache
look-up engine using a URI of the request or another type of
identifier (e.g., via the ID or URI filter 205a). The cache-
lookup engine 205 can further use the metadata (e.g., extract
any timing information or other relevant information) stored
with the matching cache entry to determine whether
response is still suited for use in being served to a current
request.

Note that the cache-look-up can be performed by the
engine 205 using one or more of various multiple strategies.
In one embodiment, multiple cook-up strategies can be
executed sequentially on each entry store din the cache 285,
until at least one strategy identifies a matching cache entry.

US 9,444,752 B2

37

The strategy employed to performing cache look-up can
include a strict matching criteria or a matching criteria
which allows for non-matching parameters.

For example, the look-up engine 205 can perform a strict
matching strategy which searches for an exact match
between an identifier (e.g., a URI for a host or resource)
referenced in a present request for which the proxy is
attempting to identify a cache entry and an identifier stored
with the cache entries. In the case where identifiers include
URIs or URLs, the matching algorithm for strict matching
will search for a cache entry where all the parameters in the
URLs match. For example:

Example 1.

Cache contains entry for <URL>/products/

Request is being made to <URL>/products/

Strict strategy will find a match, since both URIs are
same.

Example 2.

Cache contains entry for <URL>/products/?query=all

Request is being made to <URL>/products/?query=sub

Under the strict strategy outlined above, a match will not
be found since the URIs differ in the query parameter.

In another example strategy, the look-up engine 205 looks
for a cache entry with an identifier that partially matches the
identifier references in a present request for which the proxy
is attempting to identify a matching cache entry. For
example, the look-up engine 205 may look for a cache entry
with an identifier which differs from the request identifier by
a query parameter value. In utilizing this strategy, the
look-up engine 205 can collect information collected for
multiple previous requests (e.g., a list of arbitrary parameters
in an identifier) to be later checked with the detected
arbitrary parameter in the current request. For example, in
the case where cache entries are stored with URI or URL
identifiers, the look-up engine searches for a cache entry
with a URI differing by a query parameter. If found, the
engine 205 can examine the cache entry for information
collected during previous requests (e.g. a list of arbitrary
parameters) and checked whether the arbitrary parameter
detected in or extracted from the current URI/URL belongs
to the arbitrary parameters list.

Example 1.

Cache contains entry for <URL>/products/?query=all,

where query is marked as arbitrary.

Request is being made to <URL>/products/?query=sub

Match will be found, since query parameter is marked as
arbitrary.

Example 2.

Cache contains entry for <URL>/products/?query=all,

where query is marked as arbitrary.

Request is being made to

?query=sub&sort=asc

Match will not be found, since current request contains
sort parameter which is not marked as arbitrary in the cache
entry.

Additional strategies for detecting cache hit may be
employed. These strategies can be implemented singly or in
any combination thereof. A cache-hit can be determined
when any one of these strategies determines a match. A
cache miss may be indicated when the look-up engine 205
determines that the requested data cannot be served from the
cache 285, for any reason. For example, a cache miss may
be determined when no cache entries are identified for any
or all utilized look-up strategies.

Cache miss may also be determined when a matching
cache entry exists but determined to be invalid or irrelevant
for the current request. For example, the look-up engine 205

<URL>/products/

10

15

20

25

30

35

40

45

50

55

60

65

38

may further analyze metadata (e.g., which may include
timing data of the cache entry) associated with the matching
cache entry to determine whether it is still suitable for use in
responding to the present request.

When the look-up engine 205 has identified a cache hit
(e.g., an event indicating that the requested data can be
served from the cache), the stored response in the matching
cache entry can be served from the cache to satisfy the
request of an application/client.

By servicing requests using cache entries stored in cache
285, network bandwidth and other resources need not be
used to request/receive poll responses which may have not
changed from a response that has already been received at
the mobile device 250. Such servicing and fulfilling appli-
cation (e.g., mobile application) requests locally via cache
entries in the local cache 285 allows for more efficient
resource and mobile network traffic utilization and manage-
ment since the request need not be sent over the wireless
network further consuming bandwidth. In general, the cache
285 can be persisted between power on/off of the mobile
device 250, and persisted across application/client refreshes
and restarts.

For example, the local proxy 275, upon receipt of an
outgoing request from its mobile device 250 or from an
application or other type of client on the mobile device 250,
can intercept the request and determine whether a cached
response is available in the local cache 285 of the mobile
device 250. If so, the outgoing request is responded to by the
local proxy 275 using the cached response on the cache of
the mobile device. As such, the outgoing request can be
filled or satisfied without a need to send the outgoing request
over the wireless network, thus conserving network
resources and battery consumption.

In one embodiment, the responding to the requesting
application/client on the device 250 is timed to correspond
to a manner in which the content server would have
responded to the outgoing request over a persistent connec-
tion (e.g., over the persistent connection, or long-held HTTP
connection, long poll type connection, that would have been
established absent interception by the local proxy). The
timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that
end user experience is not affected, or minimally affected by
serving stored content from the local cache 285 rather than
fresh content received from the intended content source
(e.g., content host/application server 110 of FIG. 1B-FIG.
1C). The timing can be replicated exactly or estimated
within a tolerance parameter, which may go unnoticed by the
user or treated similarly by the application so as to not cause
operation issues.

For example, the outgoing request can be a request for a
persistent connection intended for the content server (e.g.,
application server/content provider of examples of FIGS.
1B-1C). In a persistent connection (e.g., long poll, COMET-
style push or any other push simulation in asynchronous
HTTP requests, long-held HTTP request, HTTP streaming,
or others) with a content source (server), the connection is
held for some time after a request is sent. The connection can
typically be persisted between the mobile device and the
server until content is available at the server to be sent to the
mobile device. Thus, there typically can be some delay in
time between when a long poll request is sent and when a
response is received from the content source. If a response
is not provided by the content source for a certain amount of
time, the connection may also terminate due to network
reasons (e.g., socket closure) if a response is not sent.

US 9,444,752 B2

39

Thus, to emulate a response from a content server sent
over a persistent connection (e.g., a long poll style connec-
tion), the manner of response of the content server can be
simulated by allowing a time interval to elapse before
responding to the outgoing request with the cached
response. The length of the time interval can be determined
on a request by request basis or on an application by
application (client by client basis), for example.

In one embodiment, the time interval is determined based
on request characteristics (e.g., timing characteristics) of an
application on the mobile device from which the outgoing
request originates. For example, poll request intervals (e.g.,
which can be tracked, detected, and determined by the long
poll detector 238a of the poll interval detector 238) can be
used to determine the time interval to wait before responding
to a request with a local cache entry and managed by the
response scheduler 249a.

One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by an entity which is physi-
cally distinct and/or separate from the mobile device 250 in
monitoring the content source for one or more applications
(such that cached responses can be verified periodically by
polling a host server (host server 110 or 310) to which the
request is directed) on behalf of the mobile device. One
example of such an external entity which can monitor the
content at the source for the mobile device 250 is a proxy
server (e.g., proxy server 125 or 325 shown in the examples
of FIGS. 1B-1C and FIG. 3A-C).

The polling schedule (e.g., including a rate/frequency of
polling) can be determined, for example, based on the
interval between the polling requests directed to the content
source from the mobile device. The polling schedule or rate
of polling may be determined at the mobile device 250 (by
the local proxy). In one embodiment, the poll interval
detector 238 of the application behavior detector 236 can
monitor polling requests directed to a content source from
the mobile device 250 in order to determine an interval
between the polling requests made from any or all applica-
tion (e.g., mobile application).

For example, the poll interval detector 238 can track
requests and responses for applications or clients on the
device 250. In one embodiment, consecutive requests are
tracked prior to detection of an outgoing request initiated
from the application (e.g., mobile application) on the mobile
device 250 by the same mobile client or application (e.g.,
mobile application). The polling rate can be determined
using request information collected for the request for which
the response is cached. In one embodiment, the rate is
determined from averages of time intervals between previ-
ous requests generated by the same client which generated
the request. For example, a first interval may be computed
between the current request and a previous request, and a
second interval can be computed between the two previous
requests. The polling rate can be set from the average of the
first interval and the second interval and sent to the proxy
server in setting up the caching strategy.

Alternate intervals may be computed in generating an
average; for example, multiple previous requests in addition
to two previous requests may be used, and more than two
intervals may be used in computing an average. In general,
in computing intervals, a given request need not have
resulted in a response to be received from the host server/
content source in order to use it for interval computation. In
other words, the timing characteristics of a given request

40

45

55

40

may be used in interval computation, as long as the request
has been detected, even if the request failed in sending, or if
the response retrieval failed.

One embodiment of the poll schedule generator 247
includes a schedule update engine 247a and/or a time
adjustment engine 2475. The schedule update engine 2474
can determine a need to update a rate or polling interval with
which a given application server/content host from a previ-
ously set value, based on a detected interval change in the
actual requests generated from a client or application (e.g.,
mobile application) on the mobile device 250.

For example, a request for which a monitoring rate was
determined may now be sent from the application (e.g.,
mobile application) or client at a different request interval.
The scheduled update engine 247a can determine the
updated polling interval of the actual requests and generate
a new rate, different from the previously set rate to poll the
host at on behalf of the mobile device 250. The updated
polling rate can be communicated to the remote proxy
(proxy server 325) over the cellular network for the remote
proxy to monitor the given host. In some instances, the
updated polling rate may be determined at the remote proxy
or remote entity which monitors the host.

In one embodiment, the time adjustment engine 2475 can
further optimize the poll schedule generated to monitor the
application server/content source (110 or 310). For example,
the time adjustment engine 247b can optionally specify a
time to start polling to the proxy server. For example, in
addition to setting the polling interval at which the proxy
server is to monitor the application, server/content host can
also specify the time at which an actual request was gener-
ated at the mobile client/application.

However, in some cases, due to inherent transmission
delay or added network delays or other types of latencies,
the remote proxy server receives the poll setup from the
local proxy with some delay (e.g., a few minutes, or a few
seconds). This has the effect of detecting response change at
the source after a request is generated by the mobile client/
application causing the invalidate of the cached response to
occur after it has once again been served to the application
after the response is no longer current or valid.

To resolve this non-optimal result of serving the out-dated
content once again before invalidating it, the time adjust-
ment engine 2475 can specity the time (t0) at which polling
should begin in addition to the rate, where the specified
initial time t0 can be specified to the proxy server 325 as a
time that is less than the actual time when the request was
generated by the mobile app/client. This way, the server
polls the resource slightly before the generation of an actual
request by the mobile client such that any content change
can be detected prior to an actual application request. This
prevents invalid or irrelevant out-dated content/response
from being served once again before fresh content is served.

In one embodiment, an outgoing request from a mobile
device 250 is detected to be for a persistent connection (e.g.,
a long poll, COMET style push, and long-held (HTTP)
request) based on timing characteristics of prior requests
from the same application or client on the mobile device
250. For example, requests and/or corresponding responses
can be tracked by the request/response tracking engine 2385
of the long poll detector 238a of the poll interval detector
238.

The timing characteristics of the consecutive requests can
be determined to set up a polling schedule for the application
or client. The polling schedule can be used to monitor the
content source (content source/application server) for con-
tent changes such that cached content stored on the local

US 9,444,752 B2

41

cache in the mobile device 250 can be appropriately man-
aged (e.g., updated or discarded). In one embodiment, the
timing characteristics can include, for example, a response
delay time (‘D’) and/or an idle time (‘IT”).

In one embodiment, the response/request tracking engine
238b can track requests and responses to determine, com-
pute, and/or estimate, the timing diagrams for applicant or
client requests.

For example, the response/request tracking engine 2385
detects a first request (Request 0) initiated by a client on the
mobile device and a second request (Request 1) initiated by
the client on the mobile device after a response is received
at the mobile device responsive to the first request. The
second request is one that is subsequent to the first request.

In one embodiment, the response/request tracking engine
238b can track requests and responses to determine, com-
pute, and/or estimate the timing diagrams for applicant or
client requests. The response/request tracking engine 2385
can detect a first request initiated by a client on the mobile
device and a second request initiated by the client on the
mobile device after a response is received at the mobile
device responsive to the first request. The second request is
one that is subsequent to the first request.

The response/request tracking engine 2385 further deter-
mines relative timings between the first, second requests,
and the response received in response to the first request. In
general, the relative timings can be used by the long poll
detector 238a to determine whether requests generated by
the application are long poll requests.

Note that in general, the first and second requests that are
used by the response/request tracking engine 2385 in com-
puting the relative timings are selected for use after a long
poll hunting period has settled or in the event when long poll
hunting does not occur. Timing characteristics that are
typical of a long poll hunting period can be, for example,
detected by the long poll hunting detector 238¢. In other
words, the requests tracked by the response/request tracking
engine 2386 and used for determining whether a given
request is a long poll occurs after the long poll has settled.

In one embodiment, the long poll hunting detector 238¢
can identify or detect hunting mode, by identifying increas-
ing request intervals (e.g., increasing delays). The long poll
hunting detector 238a can also detect hunting mode by
detecting increasing request intervals, followed by a request
with no response (e.g., connection timed out), or by detect-
ing increasing request intervals followed by a decrease in the
interval. In addition, the long poll hunting detector 238¢ can
apply a filter value or a threshold value to request-response
time delay value (e.g., an absolute value) above which the
detected delay can be considered to be a long poll request-
response delay. The filter value can be any suitable value
characteristic of long polls and/or network conditions (e.g.,
2s,5s,10s, 15, 20 s., etc.) and can be used as a filter or
threshold value.

The response delay time (‘D’) refers to the start time to
receive a response after a request has been sent and the idle
refers to time to send a subsequent request after the response
has been received. In one embodiment, the outgoing request
is detected to be for a persistent connection based on a
comparison (e.g., performed by the tracking engine 2385b) of
the response delay time relative (‘D’) or average of (‘D)
(e.g., any average over any period of time) to the idle time
(°IT”), for example, by the long poll detector 238a. The
number of averages used can be fixed, dynamically adjusted,
or changed over a longer period of time. For example, the
requests initiated by the client are determined to be long poll
requests if the response delay time interval is greater than the

10

15

20

25

30

35

40

45

50

55

60

65

42

idle time interval (D>IT or D>>IT). In one embodiment, the
tracking engine 2385 of the long poll detector computes,
determines, or estimates the response delay time interval as
the amount of time elapsed between time of the first request
and initial detection or full receipt of the response.

In one embodiment, a request is detected to be for a
persistent connection when the idle time (‘IT”) is short since
persistent connections, established in response to long poll
requests or long poll HTTP requests for example, can also be
characterized in detecting immediate or near-immediate
issuance of a subsequent request after receipt of a response
to a previous request (e.g., IT ~0). As such, the idle time
(‘IT*) can also be used to detect such immediate or near-
immediate re-request to identify long poll requests. The
absolute or relative timings determined by the tracking
engine 2380 are used to determine whether the second
request is immediately or near-immediately re-requested
after the response to the first request is received. For
example, a request may be categorized as a long poll request
if D+RT+IT~D+RT since IT is small for this to hold true. IT
may be determined to be small if it is less than a threshold
value. Note that the threshold value could be fixed or
calculated over a limited time period (a session, a day, a
month, etc.), or calculated over a longer time period (e.g.,
several months or the life of the analysis). For example, for
every request, the average 1T can be determined, and the
threshold can be determined using this average IT (e.g., the
average IT less a certain percentage may be used as the
threshold). This can allow the threshold to automatically
adapt over time to network conditions and changes in server
capability, resource availability or server response. A fixed
threshold can take upon any value including by way of
example but not limitation (e.g., 1 s. 2s. 3 5. ... etc.).

In one embodiment, the long poll detector 238a can
compare the relative timings (e.g., determined by the tracker
engine 238b) to request-response timing characteristics for
other applications to determine whether the requests of the
application are long poll requests. For example, the requests
initiated by a client or application can be determined to be
long poll requests if the response delay interval time (‘D’) or
the average response delay interval time (e.g., averaged over
x number of requests or any number of delay interval times
averaged over X amount of time) is greater than a threshold
value.

The threshold value can be determined using response
delay interval times for requests generated by other clients,
for example by the request/response tracking engine 2385
and/or by the application profile generator 239 (e.g., the
response delay interval tracker 239q). The other clients may
reside on the same mobile device and the threshold value is
determined locally by components on the mobile device.
The threshold value can be determined for all requests over
all resources server over all networks, for example. The
threshold value can be set to a specific constant value (e.g.,
30 seconds, for example) to be used for all requests, or any
request which does not have an applicable threshold value
(e.g., long poll is detected if D>30 seconds).

In some instances, the other clients reside on different
mobile devices and the threshold can be determined by a
proxy server (e.g., proxy server 325 of the host 300 shown
in the example of FIG. 3A-B) which is external to the mobile
device and able to communicate over a wireless network
with the multiple different mobile devices, as will be further
described with reference to FIG. 3B.

In one embodiment, the cache policy manager 245 sends
the polling schedule to the proxy server (e.g., proxy server
125 or 325 shown in the examples of FIGS. 1B-1C and FIG.

US 9,444,752 B2

43

3A) and can be used by the proxy server in monitoring the
content source, for example, for changed or new content
(updated response different from the cached response asso-
ciated with a request or application). A polling schedule sent
to the proxy can include multiple timing parameters includ-
ing but not limited to interval (time from request 1 to request
2) or a time out interval (time to wait for response, used in
long polls, for example). Referring to the timing diagram of
a request/response timing sequence timing intervals ‘RI’,
‘D, ‘RT°, and/or ‘IT’, or some statistical manipulation of
the above values (e.g., average, standard deviation, etc.) may
all or in part be sent to the proxy server.

For example, in the case when the local proxy 275 detects
a long poll, the various timing intervals in a request/response
timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT”) can be sent to
the proxy server 325 for use in polling the content source
(e.g., application server/content host 110). The local proxy
275 can also identify to the proxy server 325 that a given
application or request to be monitored is a long poll request
(e.g., instructing the proxy server to set a ‘long poll flag’, for
example). In addition, the proxy server uses the various
timing intervals to determine when to send keep-alive indi-
cations on behalf of mobile devices.

The local cache invalidator 244 of the caching policy
manager 245 can invalidate cache elements in the local
cache (e.g., cache 185 or 285) when new or changed data
(e.g., updated response) is detected from the application
server/content source for a given request. The cached
response can be determined to be invalid for the outgoing
request based on a notification received from the proxy
server (e.g., proxy 325 or the host server 300). The source
which provides responses to requests of the mobile client
can be monitored to determine relevancy of the cached
response stored in the cache of the mobile device 250 for the
request. For example, the cache invalidator 244 can further
remove/delete the cached response from the cache of the
mobile device when the cached response is no longer valid
for a given request or a given application.

In one embodiment, the cached response is removed from
the cache after it is provided once again to an application
which generated the outgoing request after determining that
the cached response is no longer valid. The cached response
can be provided again without waiting for the time interval
or provided again after waiting for a time interval (e.g., the
time interval determined to be specific to emulate the
response delay in a long poll). In one embodiment, the time
interval is the response delay ‘D’ or an average value of the
response delay ‘D’ over two or more values.

The new or changed data can be, for example, detected by
the proxy server (e.g., proxy server 125 or 325 shown in the
examples of FIGS. 1B-1C and FIG. 3A). When a cache entry
for a given request/poll has been invalidated, the use of the
radio on the mobile device 250 can be enabled (e.g., by the
local proxy 275 or the cache policy manager 245) to satisfy
the subsequent polling requests, as further described with
reference to the interaction diagram of FIG. 9-10.

One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request, made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the

40

45

55

44

radio of the mobile device needs to be activated to satisfy the
request made by the application (e.g., mobile application)
and also determine whether the cached response is still valid
for the outgoing request prior to responding to the outgoing
request using the cached response.

In one embodiment, the local proxy 275, in response to
determining that relevant cached content exists and is still
valid, can retrieve the cached elements from the local cache
to provide a response to the application (e.g., mobile appli-
cation) which made the polling request such that a radio of
the mobile device is not activated to provide the response to
the application (e.g., mobile application). In general, the
local proxy 275 continues to provide the cached response
each time the outgoing request is received until the updated
response different from the cached response is detected.

When it is determined that the cached response is no
longer valid, a new request for a given request is transmitted
over the wireless network for an updated response. The
request can be transmitted to the application server/content
provider (e.g., server’host 110) or the proxy server on the
host server (e.g., proxy 325 on the host 300) for a new and
updated response. In one embodiment the cached response
can be provided again as a response to the outgoing request
if a new response is not received within the time interval,
prior to removal of the cached response from the cache on
the mobile device.

FIG. 2C depicts a block diagram illustrating another
example of components in the application behavior detector
236 and the caching policy manager 245 in the local proxy
275 on the client-side of the distributed proxy system shown
in the example of FIG. 2A. The illustrated application
behavior detector 236 and the caching policy manager 245
can, for example, enable the local proxy 275 to detect cache
defeat and perform caching of content addressed by identi-
fiers intended to defeat cache.

In one embodiment, the caching policy manager 245
includes a cache defeat resolution engine 221, an identifier
formalizer 211, a cache appropriateness decision engine 246,
a poll schedule generator 247, an application protocol mod-
ule 248, a cache or connect selection engine 249 having a
cache query module 229, and/or a local cache invalidator
244. The cache defeat resolution engine 221 can further
include a pattern extraction module 222 and/or a cache
defeat parameter detector 223. The cache defeat parameter
detector 223 can further include a random parameter detec-
tor 224 and/or a time/date parameter detector 226. One
embodiment further includes an application cache policy
repository 243 coupled to the decision engine 246.

In one embodiment, the application behavior detector 236
includes a pattern detector 237, a poll interval detector 238,
an application profile generator 239, and/or a priority engine
241. The pattern detector 237 can further include a cache
defeat parameter detector 223 having also, for example, a
random parameter detector 233 and/or a time/date parameter
detector 234. One embodiment further includes an applica-
tion profile repository 242 coupled to the application profile
generator 239. The application profile generator 239, and the
priority engine 241 have been described in association with
the description of the application behavior detector 236 in
the example of FIG. 2A.

The cache defeat resolution engine 221 can detect, iden-
tify, track, manage, and/or monitor content or content
sources (e.g., servers or hosts) which employ identifiers
and/or are addressed by identifiers (e.g., resource identifiers
such as URLs and/or URIs) with one or more mechanisms
that defeat cache or are intended to defeat cache. The cache
defeat resolution engine 221 can, for example, detect from

US 9,444,752 B2

45

a given data request generated by an application or client
that the identifier defeats or potentially defeats cache, where
the data request otherwise addresses content or responses
from a host or server (e.g., application server/content host
110 or 310) that is cacheable.

In one embodiment, the cache defeat resolution engine
221 detects or identifies cache defeat mechanisms used by
content sources (e.g., application server/content host 110 or
310) using the identifier of a data request detected at the
mobile device 250. The cache defeat resolution engine 221
can detect or identify a parameter in the identifier which can
indicate that cache defeat mechanism is used. For example,
a format, syntax, or pattern of the parameter can be used to
identify cache defeat (e.g., a pattern, format, or syntax as
determined or extracted by the pattern extraction module
222).

The pattern extraction module 222 can parse an identifier
into multiple parameters or components and perform a
matching algorithm on each parameter to identify any of
which match one or more predetermined formats (e.g., a date
and/or time format). For example, the results of the match-
ing or the parsed out parameters from an identifier can be
used (e.g., by the cache defeat parameter detector 223) to
identify cache defeating parameters which can include one
or more changing parameters.

The cache defeat parameter detector 223, in one embodi-
ment can detect random parameters (e.g., by the random
parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat
parameter detector 223 can detect random parameters and/or
time/dates using commonly employed formats for these
parameters and performing pattern matching algorithms and
tests.

In addition to detecting patterns, formats, and/or syntaxes,
the cache defeat parameter detector 223 further determines
or confirms whether a given parameter is defeating cache
and whether the addressed content can be cached by the
distributed caching system. The cache defeat parameter
detector 223 can detect this by analyzing responses received
for the identifiers utilized by a given data request. In general,
a changing parameter in the identifier is identified to indicate
cache defeat when responses corresponding to multiple data
requests are the same even when the multiple data requests
uses identifiers with the changing parameter being different
for each of the multiple data requests. For example, the
request/response pairs illustrate that the responses received
are the same, even though the resource identifier includes a
parameter that changes with each request.

For example, at least two same responses may be required
to identify the changing parameter as indicating cache
defeat. In some instances, at least three same responses may
be required. The requirement for the number of same
responses needed to determine that a given parameter with
a varying value between requests is cache defeating may be
application specific, context dependent, and/or user depen-
dent/user specified, or a combination of the above. Such a
requirement may also be static or dynamically adjusted by
the distributed cache system to meet certain performance
thresholds and/or either explicit/implicit feedback regarding
user experience (e.g., whether the user or application is
receiving relevant/fresh content responsive to requests).
More of the same responses may be required to confirm
cache defeat, or for the system to treat a given parameter as
intended for cache defeat if an application begins to mal-
function due to response caching and/or if the user expresses
dissatistaction (explicit user feedback) or the system detects
user frustration (implicit user cues).

10

15

20

25

30

35

40

45

50

55

60

65

46

The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content
source (e.g., application server/content provider 110 in the
example of FIG. 1C) with which a mobile device 250
interacts, has content that may be suitable for caching. In
some instances, content from a given application server/
content provider (e.g., the server/provider 110 of FIG. 1C) is
determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of
the content that is being requested from the content source).
In one embodiment, the local proxy (e.g., the local proxy
175 or 275 of FIGS. 1B-1C and FIG. 2A) applies a selection
criteria to store the content from the host server which is
requested by an application as cached elements in a local
cache on the mobile device to satisfy subsequent requests
made by the application.

The selection criteria can also include, by way of
example, but not limitation, state of the mobile device
indicating whether the mobile device is active or inactive,
network conditions, and/or radio coverage statistics. The
cache appropriateness decision engine 246 can any one or
any combination of the criteria, and in any order, in iden-
tifying sources for which caching may be suitable.

Once application servers/content providers having iden-
tified or detected content that is potentially suitable for local
caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received
from the identified sources by storing content received from
the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIGS.
1B-1C and FIG. 2A, respectively) on the mobile device 250.
The content source can also be identified to a proxy server
(e.g., proxy server 125 or 325 shown in the examples of
FIGS. 1B-1C and FIG. 3A, respectively) remote from and in
wireless communication with the mobile device 250 such
that the proxy server can monitor the content source (e.g.,
application server/content provider 110) for new or changed
data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIGS. 1B-1C and FIG. 2A, respectively) can identify
to the proxy server that content received from a specific
application server/content provider is being stored as cached
elements in the local cache.

In one embodiment, cache elements are stored in the local
cache 285 as being associated with a normalized version of
an identifier for an identifier employing one or more param-
eters intended to defeat cache. The identifier can be normal-
ized by the identifier normalizer module 211 and the nor-
malization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case,
capitalizing letters in percent-encoded escape sequences,
removing a default port, and removing duplicate slashes.

In another embodiment, the identifier is normalized by
removing the parameter for cache defeat and/or replacing
the parameter with a static value which can be used to
address or be associated with the cached response received
responsive to a request utilizing the identifier by the nor-
malizer 211 or the cache defeat parameter handler 212. For
example, the cached elements stored in the local cache 285
(shown in FIG. 2A) can be identified using the normalized
version of the identifier or a hash value of the normalized
version of the identifier. The hash value of an identifier or of
the normalized identifier may be generated by the hash
engine 213.

Once content has been locally cached, the cache policy
manager 245 can, upon receiving future polling requests to
contact the content server, retrieve the cached elements from
the local cache to respond to the polling request made at the

US 9,444,752 B2

47

mobile device 250 such that a radio of the mobile device is
not activated to service the polling request. Such servicing
and fulfilling application (e.g., mobile application) requests
locally via local cache entries allow for more efficient
resource and mobile network traffic utilization and manage-
ment since network bandwidth and other resources need not
be used to request/receive poll responses which may have
not changed from a response that has already been received
at the mobile device 250.

One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIGS.
1B-1C and FIG. 3A) in monitoring the content source for
one or more applications. The polling schedule can be
determined, for example, based on the interval between the
polling requests directed to the content source from the
mobile device. In one embodiment, the poll interval detector
238 of the application behavior detector can monitor polling
requests directed to a content source from the mobile device
250 in order to determine an interval between the polling
requests made from any or all application (e.g., mobile
application).

In one embodiment, the cache policy manager 245 sends
the polling schedule is sent to the proxy server (e.g., proxy
server 125 or 325 shown in the examples of FIGS. 1B-1C
and FIG. 3A) and can be used by the proxy server in
monitoring the content source, for example, for changed or
new content. The local cache invalidator 244 of the caching
policy manager 245 can invalidate cache elements in the
local cache (e.g., cache 185 or 285) when new or changed
data is detected from the application server/content source
for a given request. The new or changed data can be, for
example, detected by the proxy server. When a cache entry
for a given request/poll has been invalidated and/or removed
(e.g., deleted from cache) after invalidation, the use of the
radio on the mobile device 250 can be enabled (e.g., by the
local proxy or the cache policy manager 245) to satisty the
subsequent polling requests, as further described with ref-
erence to the interaction diagram of FIG. 4B.

In another embodiment, the proxy server (e.g., proxy
server 125 or 325 shown in the examples of FIGS. 1B-1C 1C
and FIG. 3A) uses a modified version of a resource identifier
used in a data request to monitor a given content source (the
application server/content host 110 of FIGS. 1B-1C to which
the data request is addressed) for new or changed data. For
example, in the instance where the content source or iden-
tifier is detected to employ cache defeat mechanisms, a
modified (e.g., normalized) identifier can be used instead to
poll the content source. The modified or normalized version
of the identifier can be communicated to the proxy server by
the caching policy manager 245, or more specifically the
cache defeat parameter handler 212 of the identifier normal-
izer 211.

The modified identifier used by the proxy server to poll
the content source on behalf of the mobile device/applica-
tion (e.g., mobile application) may or may not be the same
as the normalized identifier. For example, the normalized
identifier may be the original identifier with the changing
cache defeating parameter removed whereas the modified
identifier uses a substitute parameter in place of the param-
eter that is used to defeat cache (e.g., the changing parameter
replaced with a static value or other predetermined value
known to the local proxy and/or proxy server). The modified
parameter can be determined by the local proxy 275 and

10

15

20

25

30

35

40

45

50

55

60

65

48

communicated to the proxy server. The modified parameter
may also be generated by the proxy server (e.g., by the
identifier modifier module 353 shown in the example of FIG.
30).

One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the
request made by the application (e.g., mobile application). In
one embodiment, the local proxy 275, in response to deter-
mining that relevant cached content exists and is still valid,
can retrieve the cached elements from the local cache to
provide a response to the application (e.g., mobile applica-
tion) which made the polling request such that a radio of the
mobile device is not activated to provide the response to the
application (e.g., mobile application).

In one embodiment, the cached elements stored in the
local cache 285 (shown in FIG. 2A) can be identified using
a normalized version of the identifier or a hash value of the
normalized version of the identifier, for example, using the
cache query module 229. Cached elements can be stored
with normalized identifiers which have cache defeating
parameters removed or otherwise replaced such that the
relevant cached elements can be identified and retrieved in
the future to satisfy other requests employing the same type
of cache defeat. For example, when an identifier utilized in
a subsequent request is determined to be utilizing the same
cache defeating parameter, the normalized version of this
identifier can be generated and used to identify a cached
response stored in the mobile device cache to satisfy the data
request. The hash value of an identifier or of the normalized
identifier may be generated by the hash engine 213 of the
identifier normalizer 211.

FIG. 2D depicts a block diagram illustrating examples of
additional components in the local proxy 275 shown in the
example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation
based on application behavior and/or user activity.

In this embodiment of the local proxy 275, the user
activity module 215 further includes one or more of, a user
activity tracker 215a, a user activity prediction engine 2155,
and/or a user expectation manager 215¢. The application
behavior detect 236 can further include a prioritization
engine 241a, a time criticality detection engine 2415, an
application state categorizer 241c, and/or an application
traffic categorizer 241d. The local proxy 275 can further
include a backlight detector 219 and/or a network configu-
ration selection engine 251. The network configuration
selection engine 251 can further include, one or more of, a
wireless generation standard selector 251a, a data rate
specifier 2515, an access channel selection engine 251c,
and/or an access point selector 251d.

In one embodiment, the application behavior detector 236
is able to detect, determined, identify, or infer, the activity
state of an application on the mobile device 250 to which
traffic has originated from or is directed to, for example, via
the application state categorizer 241¢ and/or the traffic
categorizer 241d. The activity state can be determined by
whether the application is in a foreground or background

US 9,444,752 B2

49

state on the mobile device (via the application state catego-
rizer 241c¢) since the traffic for a foreground application vs.
a background application may be handled differently.

In one embodiment, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software
agents or hardware sensors on the mobile device, including
but not limited to, resistive sensors, capacitive sensors,
ambient light sensors, motion sensors, touch sensors, etc. In
general, if the backlight is on, the traffic can be treated as
being or determined to be generated from an application that
is active or in the foreground, or the traffic is interactive. In
addition, if the backlight is on, the traffic can be treated as
being or determined to be traffic from user interaction or user
activity, or traffic containing data that the user is expecting
within some time frame.

In one embodiment, the activity state is determined based
on whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that
may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

For example, a mail or message delete action at a mobile
device 250 generates a request to delete the corresponding
mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be catego-
rized as maintenance traffic, or traffic having a lower priority
(e.g., by the prioritization engine 241a) and/or is not time-
critical (e.g., by the time criticality detection engine 2145).

Contrastingly, a mail ‘read’ or message ‘read’ request
initiated by a user a the mobile device 250, can be catego-
rized as ‘interactive traffic’ since the user generally is
waiting to access content or data when they request to read
a message or mail. Similarly, such a request can be catego-
rized as having higher priority (e.g., by the prioritization
engine 241a) and/or as being time critical/time sensitive
(e.g., by the time criticality detection engine 2415).

The time criticality detection engine 2415 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from a host server (e.g., host 300) or appli-
cation server (e.g., app server/content source 110). For
example, time sensitive data can include, status updates,
stock information updates, IM presence information, email
messages or other messages, actions generated from mobile
gaming applications, webpage requests, location updates,
etc. Data that is not time sensitive or time critical, by nature
of the content or request, can include requests to delete
messages, mark-as-read or edited actions, application-spe-
cific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does
not frequently changing by nature, etc. In some instances
when the data is not time critical, the timing with which to
allow the traffic to pass through is set based on when
additional data needs to be sent from the mobile device 250.
For example, traffic shaping engine 255 can align the traffic
with one or more subsequent transactions to be sent together
in a single power-on event of the mobile device radio (e.g.,
using the alignment module 256 and/or the batching module
257). The alignment module 256 can also align polling

20

25

30

35

40

45

50

requests occurring close in time directed to the same host
server, since these request are likely to be responded to with
the same data.

In the alternate or in combination, the activity state can be
determined from assessing, determining, evaluating, infer-
ring, identifying user activity at the mobile device 250 (e.g.,
via the user activity module 215). For example, user activity
can be directly detected and tracked using the user activity
tracker 215a. The traffic resulting therefrom can then be
categorized appropriately for subsequent processing to
determine the policy for handling. Furthermore, user activity
can be predicted or anticipated by the user activity predic-
tion engine 2155b. By predicting user activity or anticipating
user activity, the traffic thus occurring after the prediction
can be treated as resulting from user activity and categorized
appropriately to determine the transmission policy.

In addition, the user activity module 215 can also manage
user expectations (e.g., via the user expectation manager
215¢ and/or in conjunction with the activity tracker 215
and/or the prediction engine 21556) to ensure that traffic is
categorized appropriately such that user expectations are
generally met. For example, a user-initiated action should be
analyzed (e.g., by the expectation manager 215) to deter-
mine or infer whether the user would be waiting for a
response. If so, such traffic should be handled under a policy
such that the user does not experience an unpleasant delay
in receiving such a response or action.

In one embodiment, an advanced generation wireless
standard network is selected for use in sending traffic
between a mobile device and a host server in the wireless
network based on the activity state of the application on the
mobile device for which traffic is originated from or directed
to. An advanced technology standards such as the 3G, 3.5G,
3G+, 4G, or LTE network can be selected for handling traffic
generated as a result of user interaction, user activity, or
traffic containing data that the user is expecting or waiting
for. Advanced generation wireless standard network can also
be selected for to transmit data contained in traffic directed
to the mobile device which responds to foreground activi-
ties.

In categorizing traffic and defining a transmission policy
for mobile traffic, a network configuration can be selected
for use (e.g., by the network configuration selection engine
251) on the mobile device 250 in sending traffic between the
mobile device and a proxy server (325) and/or an application
server (e.g., app server/host 110). The network configuration
that is selected can be determined based on information
gathered by the application behavior module 236 regarding
application activity state (e.g., background or foreground
traffic), application traffic category (e.g., interactive or main-
tenance ftraffic), any priorities of the data/content, time
sensitivity/criticality.

The network configuration selection engine 2510 can
select or specify one or more of, a generation standard (e.g.,
via wireless generation standard selector 251a), a data rate
(e.g., via data rate specifier 2515), an access channel (e.g.,
access channel selection engine 251c¢), and/or an access
point (e.g., via the access point selector 251d), in any
combination.

For example, a more advanced generation (e.g., 3G, LTE,
or 4G or later) can be selected or specified for traffic when
the activity state is in interaction with a user or in a
foreground on the mobile device. Contrastingly, an older
generation standard (e.g., 2G, 2.5G, or 3G or older) can be
specified for traffic when one or more of the following is
detected, the application is not interacting with the user, the
application is running in the background on the mobile

US 9,444,752 B2

51

device, or the data contained in the traffic is not time critical,
or is otherwise determined to have lower priority.

Similarly, a network configuration with a slower data rate
can be specified for traffic when one or more of the follow-
ing is detected, the application is not interacting with the
user, the application is running in the background on the
mobile device, or the data contained in the traffic is not time
critical. The access channel (e.g., Forward access channel or
dedicated channel) can be specified.

FIG. 3A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system residing on a host server 300 that manages traffic in
a wireless network for resource conservation. The server-
side proxy (or proxy server 325) can further categorize
mobile traffic and/or implement delivery policies based on
application behavior, content priority, user activity, and/or
user expectations.

The host server 300 generally includes, for example, a
network interface 308 and/or one or more repositories 312,
314, and 316. Note that server 300 may be any portable/
mobile or non-portable device, server, cluster of computers
and/or other types of processing units (e.g., any number of
a machine shown in the example of FIG. 16) able to receive
or transmit signals to satisfy data requests over a network
including any wired or wireless networks (e.g., WiF1i, cel-
Iular, Bluetooth, etc.).

The network interface 308 can include networking mod-
ule(s) or devices(s) that enable the server 300 to mediate
data in a network with an entity that is external to the host
server 300, through any known and/or convenient commu-
nications protocol supported by the host and the external
entity. Specifically, the network interface 308 allows the
server 300 to communicate with multiple devices including
mobile phone devices 350 and/or one or more application
servers/content providers 310.

The host server 300 can store information about connec-
tions (e.g., network characteristics, conditions, types of
connections, etc.) with devices in the connection metadata
repository 312. Additionally, any information about third
party application or content providers can also be stored in
the repository 312. The host server 300 can store informa-
tion about devices (e.g., hardware capability, properties,
device settings, device language, network capability, manu-
facturer, device model, OS, OS version, etc.) in the device
information repository 314. Additionally, the host server 300
can store information about network providers and the
various network service areas in the network service pro-
vider repository 316.

The communication enabled by network interface 308
allows for simultaneous connections (e.g., including cellular
connections) with devices 350 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN,
WiF1i, etc.) with content servers/providers 310 to manage the
traffic between devices 350 and content providers 310 or
other servers such as an ad server 320a, promotional content
server 3205, or an e-coupon server 320c¢ for optimizing
network resource utilization and/or to conserve power (bat-
tery) consumption on the serviced devices 350. The host
server 300 can communicate with mobile devices 350 ser-
viced by different network service providers and/or in the
same/different network service areas. The host server 300
can operate and is compatible with devices 350 with varying
types or levels of mobile capabilities, including by way of
example but not limitation, 1G, 2G, 2G transitional (2.5G,
2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G,
3.9G), 4G (IMT-advanced), etc.

10

15

20

25

30

35

40

45

50

55

60

65

52

In general, the network interface 308 can include one or
more of a network adaptor card, a wireless network interface
card (e.g., SMS interface, WiFi interface, interfaces for
various generations of mobile communication standards
including but not limited to 1G, 2G, 3G, 3.5G, 4G type
networks such as LTE, WiMAX, etc.), Bluetooth, WiFi, or
any other network whether or not connected via a router, an
access point, a wireless router, a switch, a multilayer switch,
a protocol converter, a gateway, a bridge, a bridge router, a
hub, a digital media receiver, and/or a repeater.

The host server 300 can further include server-side com-
ponents of the distributed proxy and cache system which can
include a proxy server 325 and a server cache 335. In one
embodiment, the proxy server 325 can include an HTTP
access engine 345, a caching policy manager 355, a proxy
controller 365, a traffic shaping engine 375, a new data
detector 347 and/or a connection manager 395.

The HTTP access engine 345 may further include a
heartbeat manager 398; the proxy controller 365 may further
include a data invalidator module 368; the traffic shaping
engine 375 may further include a control protocol 376 and
a batching module 377. Additional or less components/
modules/engines can be included in the proxy server 325
and each illustrated component.

As used herein, a “module,” a “manager,” a “handler,” a
“detector,” an “interface,” a “controller,” a “normalizer,” a
“generator,” an “invalidator,” or an “engine” includes a
general purpose, dedicated or shared processor and, typi-
cally, firmware or software modules that are executed by the
processor. Depending upon implementation-specific or other
considerations, the module, manager, handler, detector,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can include
general or special purpose hardware, firmware, or software
embodied in a computer-readable (storage) medium for
execution by the processor. As used herein, a computer-
readable medium or computer-readable storage medium is
intended to include all mediums that are statutory (e.g., in
the United States, under 35 U.S.C. 101), and to specifically
exclude all mediums that are non-statutory in nature to the
extent that the exclusion is necessary for a claim that
includes the computer-readable (storage) medium to be
valid. Known statutory computer-readable mediums include
hardware (e.g., registers, random access memory (RAM),
non-volatile (NV) storage, to name a few), but may or may
not be limited to hardware.

In the example of a device (e.g., mobile device 350)
making an application or content request to an application
server or content provider 310, the request may be inter-
cepted and routed to the proxy server 325 which is coupled
to the device 350 and the application server/content provider
310. Specifically, the proxy server is able to communicate
with the local proxy (e.g., proxy 175 and 275 of the
examples of FIG. 1 and FIG. 2 respectively) of the mobile
device 350, the local proxy forwards the data request to the
proxy server 325 in some instances for further processing
and, if needed, for transmission to the application server/
content server 310 for a response to the data request.

In such a configuration, the host 300, or the proxy server
325 in the host server 300 can utilize intelligent information
provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of
network and device resources. For example, the proxy server
325 can identify characteristics of user activity on the device
350 to modify its communication frequency. The character-

US 9,444,752 B2

53

istics of user activity can be determined by, for example, the
activity/behavior awareness module 366 in the proxy con-
troller 365 via information collected by the local proxy on
the device 350.

In one embodiment, communication frequency can be
controlled by the connection manager 395 of the proxy
server 325, for example, to adjust push frequency of content
or updates to the device 350. For instance, push frequency
can be decreased by the connection manager 395 when
characteristics of the user activity indicate that the user is
inactive. In one embodiment, when the characteristics of the
user activity indicate that the user is subsequently active
after a period of inactivity, the connection manager 395 can
adjust the communication frequency with the device 350 to
send data that was buffered as a result of decreased com-
munication frequency to the device 350.

In addition, the proxy server 325 includes priority aware-
ness of various requests, transactions, sessions, applications,
and/or specific events. Such awareness can be determined by
the local proxy on the device 350 and provided to the proxy
server 325. The priority awareness module 367 of the proxy
server 325 can generally assess the priority (e.g., including
time-criticality, time-sensitivity, etc.) of various events or
applications; additionally, the priority awareness module
367 can track priorities determined by local proxies of
devices 350.

In one embodiment, through priority awareness, the con-
nection manager 395 can further modify communication
frequency (e.g., use or radio as controlled by the radio
controller 396) of the server 300 with the devices 350. For
example, the server 300 can notify the device 350, thus
requesting use of the radio if it is not already in use when
data or updates of an importance/priority level which meets
a criteria becomes available to be sent.

In one embodiment, the proxy server 325 can detect
multiple occurrences of events (e.g., transactions, content,
data received from server/provider 310) and allow the events
to accumulate for batch transfer to device 350. Batch trans-
fer can be cumulated and transfer of events can be delayed
based on priority awareness and/or user activity/application
behavior awareness as tracked by modules 367 and/or 366.
For example, batch transfer of multiple events (of a lower
priority) to the device 350 can be initiated by the batching
module 377 when an event of a higher priority (meeting a
threshold or criteria) is detected at the server 300. In
addition, batch transfer from the server 300 can be triggered
when the server receives data from the device 350, indicat-
ing that the device radio is already in use and is thus on. In
one embodiment, the proxy server 325 can order the each
messages/packets in a batch for transmission based on
event/transaction priority such that higher priority content
can be sent first in case connection is lost or the battery dies,
etc.

In one embodiment, the server 300 caches data (e.g., as
managed by the caching policy manager 355) such that
communication frequency over a network (e.g., cellular
network) with the device 350 can be modified (e.g.,
decreased). The data can be cached, for example, in the
server cache 335 for subsequent retrieval or batch sending to
the device 350 to potentially decrease the need to turn on the
device 350 radio. The server cache 335 can be partially or
wholly internal to the host server 300, although in the
example of FIG. 3A it is shown as being external to the host
300. In some instances, the server cache 335 may be the
same as and/or integrated in part or in whole with another
cache managed by another entity (e.g., the optional caching
proxy server 199 shown in the example of FIG. 1C), such as

30

40

45

54

being managed by an application server/content provider
310, a network service provider, or another third party.

In one embodiment, content caching is performed locally
on the device 350 with the assistance of host server 300. For
example, proxy server 325 in the host server 300 can query
the application server/provider 310 with requests and moni-
tor changes in responses. When changed or new responses
are detected (e.g., by the new data detector 347), the proxy
server 325 can notify the mobile device 350 such that the
local proxy on the device 350 can make the decision to
invalidate (e.g., indicated as out-dated) the relevant cache
entries stored as any responses in its local cache. Alterna-
tively, the data invalidator module 368 can automatically
instruct the local proxy of the device 350 to invalidate
certain cached data, based on received responses from the
application server/provider 310. The cached data is marked
as invalid, and can get replaced or deleted when new content
is received from the content server 310.

Note that data change can be detected by the detector 347
in one or more ways. For example, the server/provider 310
can notify the host server 300 upon a change. The change
can also be detected at the host server 300 in response to a
direct poll of the source server/provider 310. In some
instances, the proxy server 325 can in addition, pre-load the
local cache on the device 350 with the new/updated data.
This can be performed when the host server 300 detects that
the radio on the mobile device is already in use, or when the
server 300 has additional content/data to be sent to the
device 350.

One or more the above mechanisms can be implemented
simultaneously or adjusted/configured based on application
(e.g., different policies for different servers/providers 310).
In some instances, the source provider/server 310 may
notify the host 300 for certain types of events (e.g., events
meeting a priority threshold level). In addition, the provider/
server 310 may be configured to notify the host 300 at
specific time intervals, regardless of event priority.

In one embodiment, the proxy server 325 of the host 300
can monitor/track responses received for the data request
from the content source for changed results prior to return-
ing the result to the mobile device, such monitoring may be
suitable when data request to the content source has yielded
same results to be returned to the mobile device, thus
preventing network/power consumption from being used
when no new changes are made to a particular requested.
The local proxy of the device 350 can instruct the proxy
server 325 to perform such monitoring or the proxy server
325 can automatically initiate such a process upon receiving
a certain number of the same responses (e.g., or a number of
the same responses in a period of time) for a particular
request.

In one embodiment, the server 300, through the activity/
behavior awareness module 366, is able to identify or detect
user activity at a device that is separate from the mobile
device 350. For example, the module 366 may detect that a
user’s message inbox (e.g., email or types of inbox) is being
accessed. This can indicate that the user is interacting with
his/her application using a device other than the mobile
device 350 and may not need frequent updates, if at all.

The server 300, in this instance, can thus decrease the
frequency with which new or updated content is sent to the
mobile device 350, or eliminate all communication for as
long as the user is detected to be using another device for
access. Such frequency decrease may be application specific
(e.g., for the application with which the user is interacting
with on another device), or it may be a general frequency
decrease (E.g., since the user is detected to be interacting

US 9,444,752 B2

55

with one server or one application via another device, he/she
could also use it to access other services.) to the mobile
device 350.

In one embodiment, the host server 300 is able to poll
content sources 310 on behalf of devices 350 to conserve
power or battery consumption on devices 350. For example,
certain applications on the mobile device 350 can poll its
respective server 310 in a predictable recurring fashion.
Such recurrence or other types of application behaviors can
be tracked by the activity/behavior module 366 in the proxy
controller 365. The host server 300 can thus poll content
sources 310 for applications on the mobile device 350 that
would otherwise be performed by the device 350 through a
wireless (e.g., including cellular connectivity). The host
server can poll the sources 310 for new or changed data by
way of the HTTP access engine 345 to establish HTTP
connection or by way of radio controller 396 to connect to
the source 310 over the cellular network. When new or
changed data is detected, the new data detector 347 can
notify the device 350 that such data is available and/or
provide the new/changed data to the device 350.

In one embodiment, the connection manager 395 deter-
mines that the mobile device 350 is unavailable (e.g., the
radio is turned off) and utilizes SMS to transmit content to
the device 350, for instance, via the SMSC shown in the
example of FIG. 1C. SMS is used to transmit invalidation
messages, batches of invalidation messages, or even content
in the case where the content is small enough to fit into just
a few (usually one or two) SMS messages. This avoids the
need to access the radio channel to send overhead informa-
tion. The host server 300 can use SMS for certain transac-
tions or responses having a priority level above a threshold
or otherwise meeting a criteria. The server 300 can also
utilize SMS as an out-of-band trigger to maintain or wake-
up an IP connection as an alternative to maintaining an
always-on [P connection. In one embodiment, connection
manager 395 may include an Internet/ WiFi controller 397
for this purpose.

In one embodiment, the connection manager 395 in the
proxy server 325 (e.g., the heartbeat manager 398) can
generate and/or transmit heartbeat messages on behalf of
connected devices 350 to maintain a backend connection
with a provider 310 for applications running on devices 350.

For example, in the distributed proxy system, local cache
on the device 350 can prevent any or all heartbeat messages
needed to maintain TCP/IP connections required for appli-
cations from being sent over the cellular, or other, network
and instead rely on the proxy server 325 on the host server
300 to generate and/or send the heartbeat messages to
maintain a connection with the backend (e.g., application
server/provider 110 in the example of FIG. 1A). The proxy
server can generate the keep-alive (heartbeat) messages
independent of the operations of the local proxy on the
mobile device.

The repositories 312, 314, and/or 316 can additionally
store software, descriptive data, images, system information,
drivers, and/or any other data item utilized by other com-
ponents of the host server 300 and/or any other servers for
operation. The repositories may be managed by a database
management system (DBMS), for example, which may be
but is not limited to Oracle, DB2, Microsoft Access, Micro-
soft SQL Server, PostgreSQL, MySQL, FileMaker, etc.

The repositories can be implemented via object-oriented
technology and/or via text files and can be managed by a
distributed database management system, an object-oriented
database management system (OODBMS) (e.g., Concept-
Base, FastDB Main Memory Database Management Sys-

10

15

20

25

30

35

40

45

50

55

60

65

56

tem, JDOInstruments, ObjectDB, etc.), an object-relational
database management system (ORDBMS) (e.g., Informix,
OpenLink Virtuoso, VMDS, etc.), a file system, and/or any
other convenient or known database management package.

FIG. 3B depicts a block diagram illustrating a further
example of components in the caching policy manager 355
in the cache system shown in the example of FIG. 3A which
is capable of caching and adapting caching strategies for
application (e.g., mobile application) behavior and/or net-
work conditions.

The caching policy manager 355, in one embodiment, can
further include a metadata generator 303, a cache look-up
engine 305, an application protocol module 356, a content
source monitoring engine 357 having a poll schedule man-
ager 358, a response analyzer 361, and/or an updated or new
content detector 359. In one embodiment, the poll schedule
manager 358 further includes a host timing simulator 358a,
a long poll request detector/manager 3584, a schedule
update engine 358¢, and/or a time adjustment engine 3584.
The metadata generator 303 and/or the cache look-up engine
305 can be coupled to the cache 335 (or, server cache) for
modification or addition to cache entries or querying thereof.

In one embodiment, the proxy server (e.g., the proxy
server 125 or 325 of the examples of FIGS. 1B-1C and FIG.
3A) can monitor a content source for new or changed data
via the monitoring engine 357. The proxy server, as shown,
is an entity external to the mobile device 250 of FIG. 2A-B.
The content source (e.g., application server/content provider
110 of FIGS. 1B-1C) can be one that has been identified to
the proxy server (e.g., by the local proxy) as having content
that is being locally cached on a mobile device (e.g., mobile
device 150 or 250). The content source can be monitored, for
example, by the monitoring engine 357 at a frequency that
is based on polling frequency of the content source at the
mobile device. The poll schedule can be generated, for
example, by the local proxy and sent to the proxy server. The
poll frequency can be tracked and/or managed by the poll
schedule manager 358.

For example, the proxy server can poll the host (e.g.,
content provider/application server) on behalf of the mobile
device and simulate the polling behavior of the client to the
host via the host timing simulator 358a. The polling behav-
ior can be simulated to include characteristics of a long poll
request-response sequences experienced in a persistent con-
nection with the host (e.g., by the long poll request detector/
manager 3585). Note that once a polling interval/behavior is
set, the local proxy 275 on the device-side and/or the proxy
server 325 on the server-side can verify whether application
and application server/content host behavior match or can be
represented by this predicted pattern. In general, the local
proxy and/or the proxy server can detect deviations and,
when appropriate, re-evaluate and compute, determine, or
estimate another polling interval.

In one embodiment, the caching policy manager 355 on
the server-side of the distribute proxy can, in conjunction
with or independent of the proxy server 275 on the mobile
device, identify or detect long poll requests. For example,
the caching policy manager 355 can determine a threshold
value to be used in comparison with a response delay
interval time in a request-response sequence for an applica-
tion request to identify or detect long poll requests, possible
long poll requests (e.g., requests for a persistent connection
with a host with which the client communicates including,
but not limited to, a long-held HTTP request, a persistent
connection enabling COMET style push, request for HTTP
streaming, etc.), or other requests which can otherwise be
treated as a long poll request.

US 9,444,752 B2

57

For example, the threshold value can be determined by the
proxy 325 using response delay interval times for requests
generated by clients/applications across mobile devices
which may be serviced by multiple different cellular or
wireless networks. Since the proxy 325 resides on host 300
is able to communicate with multiple mobile devices via
multiple networks, the caching policy manager 355 has
access to application/client information at a global level
which can be used in setting threshold values to categorize
and detect long polls.

By tracking response delay interval times across applica-
tions across devices over different or same networks, the
caching policy manager 355 can set one or more threshold
values to be used in comparison with response delay interval
times for long poll detection. Threshold values set by the
proxy server 325 can be static or dynamic, and can be
associated with conditions and/or a time-to-live (an expira-
tion time/date in relative or absolute terms).

In addition, the caching policy manager 355 of the proxy
325 can further determine the threshold value, in whole or
in part, based on network delays of a given wireless network,
networks serviced by a given carrier (service provider), or
multiple wireless networks. The proxy 325 can also deter-
mine the threshold value for identification of long poll
requests based on delays of one or more application server/
content provider (e.g., 110) to which application (e.g.,
mobile application) or mobile client requests are directed.

The proxy server can detect new or changed data at a
monitored content source and transmits a message to the
mobile device notifying it of such a change such that the
mobile device (or the local proxy on the mobile device) can
take appropriate action (e.g., to invalidate the cache ele-
ments in the local cache). In some instances, the proxy
server (e.g., the caching policy manager 355) upon detecting
new or changed data can also store the new or changed data
in its cache (e.g., the server cache 135 or 335 of the
examples of FIG. 1C and FIG. 3A, respectively). The
new/updated data stored in the server cache 335 can be used
in some instances to satisfy content requests at the mobile
device; for example, it can be used after the proxy server has
notified the mobile device of the new/changed content and
that the locally cached content has been invalidated.

The metadata generator 303, similar to the metadata
generator 203 shown in the example of FIG. 2B, can
generate metadata for responses cached for requests at the
mobile device 250. The metadata generator 303 can generate
metadata for cache entries stored in the server cache 335.
Similarly, the cache look-up engine 305 can include the
same or similar functions are those described for the cache
look-up engine 205 shown in the example of FIG. 2B.

The response analyzer 361 can perform any or all of the
functionalities related to analyzing responses received for
requests generated at the mobile device 250 in the same or
similar fashion to the response analyzer 2464 of the local
proxy shown in the example of FIG. 2B. Since the proxy
server 325 is able to receive responses from the application
server/content source 310 directed to the mobile device 250,
the proxy server 325 (e.g., the response analyzer 361) can
perform similar response analysis steps to determine cache-
ability, as described for the response analyzer of the local
proxy. The responses can be analyzed in addition to or in lieu
of the analysis that can be performed at the local proxy 275
on the mobile device 250.

Furthermore, the schedule update engine 358¢ can update
the polling interval of a given application server/content host
based on application request interval changes of the appli-
cation at the mobile device 250 as described for the schedule

10

15

20

25

30

35

40

45

50

55

60

65

58

update engine in the local proxy 275. The time adjustment
engine 3584 can set an initial time at which polls of the
application server/content host is to begin to prevent the
serving of out of date content once again before serving
fresh content as described for the schedule update engine in
the local proxy 275. Both the schedule updating and the time
adjustment algorithms can be performed in conjunction with
or in lieu of the similar processes performed at the local
proxy 275 on the mobile device 250.

FIG. 3C depicts a block diagram illustrating another
example of components in the caching policy manager 355
in the proxy server 375 on the server-side of the distributed
proxy system shown in the example of FIG. 3A which is
capable of managing and detecting cache defeating mecha-
nisms and monitoring content sources.

The caching policy manager 355, in one embodiment, can
further include a cache defeating source manager 352, a
content source monitoring engine 357 having a poll schedule
manager 358, and/or an updated or new content detector
359. The cache defeating source manager 352 can further
include an identifier modifier module 353 and/or an identi-
fier pattern tracking module 354.

In one embodiment, the proxy server (e.g., the proxy
server 125 or 325 of the examples of FIGS. 1B-1C and FIG.
3A) can monitor a content source for new or changed data
via the monitoring engine 357. The content source (e.g.,
application server/content provider 110 of FIGS. 1B-1C or
310 of FIG. 3A) can be one that has been identified to the
proxy server (e.g., by the local proxy) as having content that
is being locally cached on a mobile device (e.g., mobile
device 150 or 250). The content source 310 can be moni-
tored, for example, by the monitoring engine 357 at a
frequency that is based on polling frequency of the content
source at the mobile device. The poll schedule can be
generated, for example, by the local proxy and sent to the
proxy server 325. The poll frequency can be tracked and/or
managed by the poll schedule manager 358.

In one embodiment, the proxy server 325 uses a normal-
ized identifier or modified identifier in polling the content
source 310 to detect new or changed data (responses). The
normalized identifier or modified identifier can also be used
by the proxy server 325 in storing responses on the server
cache 335. In general, the normalized or modified identifiers
can be used when cache defeat mechanisms are employed
for cacheable content. Cache defeat mechanisms can be in
the form of a changing parameter in an identifier such as a
URI or URL and can include a changing time/data param-
eter, a randomly varying parameter, or other types param-
eters.

The normalized identifier or modified identifier removes
or otherwise replaces the changing parameter for association
with subsequent requests and identification of associated
responses and can also be used to poll the content source. In
one embodiment, the modified identifier is generated by the
cache defeating source manager 352 (e.g., the identifier
modifier module 353) of the caching policy manager 355 on
the proxy server 325 (server-side component of the distrib-
uted proxy system). The modified identifier can utilize a
substitute parameter (which is generally static over a period
of time) in place of the changing parameter that is used to
defeat cache.

The cache defeating source manager 352 optionally
includes the identifier pattern tracking module 354 to track,
store, and monitor the various modifications of an identifier
or identifiers that address content for one or more content
sources (e.g., application server/content host 110 or 310) to
continuously verify that the modified identifiers and/or nor-

US 9,444,752 B2

59

malized identifiers used by the proxy server 325 to poll the
content sources work as predicted or intended (e.g., receive
the same responses or responses that are otherwise still
relevant compared to the original, unmodified identifier).

In the event that the pattern tracking module 354 detects
a modification or normalization of an identifier that causes
erratic or unpredictable behavior (e.g., unexpected responses
to be sent) on the content source, the tracking module 354
can log the modification and instruct the cache defeating
source manager 352 to generate another modification/nor-
malization, or notify the local proxy (e.g., local proxy 275)
to generate another modification/normalization for use in
polling the content source. In the alternative or in parallel,
the requests from the given mobile application/client on the
mobile device (e.g., mobile device 250) can temporarily be
sent across the network to the content source for direct
responses to be provided to the mobile device and/or until a
modification of an identifier which works can be generated.

In one embodiment, responses are stored as server cache
elements in the server cache when new or changed data is
detected for a response that is already stored on a local cache
(e.g., cache 285) of the mobile device (e.g., mobile device
250). Therefore, the mobile device or local proxy 275 can
connect to the proxy server 325 to retrieve the new or
changed data for a response to a request which was previ-
ously cached locally in the local cache 285 (now invalid,
out-dated, or otherwise determined to be irrelevant).

The proxy server 325 can detect new or changed data at
a monitored application server/content host 310 and trans-
mits a message to the mobile device notifying it of such a
change such that the mobile device (or the local proxy on the
mobile device) can take appropriate action (e.g., to invali-
date the cache elements in the local cache). In some
instances, the proxy server (e.g., the caching policy manager
355), upon detecting new or changed data, can also store the
new or changed data in its cache (e.g., the server cache 135
or 335 of the examples of FIG. 1C and FIG. 3A, respec-
tively). The updated/new data stored in the server cache can
be used, in some instances, to satisfy content requests at the
mobile device; for example, it can be used after the proxy
server has notified the mobile device of the new/changed
content and that the locally cached content has been invali-
dated.

FIG. 3D depicts a block diagram illustrating examples of
additional components in proxy server 325 shown in the
example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation
based on application behavior and/or traffic priority.

In one embodiment of the proxy server 325, the traffic
shaping engine 375 is further coupled to a traffic analyzer
336 for categorizing mobile traffic for policy definition and
implementation for mobile traffic and transactions directed
to one or more mobile devices (e.g., mobile device 250 of
FIG. 2A-2D) or to an application server/content host (e.g.,
110 of FIGS. 1B-1C). In general, the proxy server 325 is
remote from the mobile devices and remote from the host
server, as shown in the examples of FIGS. 1B-1C. The proxy
server 325 or the host server 300 can monitor the traffic for
multiple mobile devices and is capable of categorizing traffic
and devising traffic policies for different mobile devices.

In addition, the proxy server 325 or host server 300 can
operate with multiple carriers or network operators and can
implement carrier-specific policies relating to categorization
of traffic and implementation of traffic policies for the
various categories. For example, the traffic analyzer 336 of
the proxy server 325 or host server 300 can include one or
more of, a prioritization engine 341a, a time criticality

10

15

20

25

30

35

40

45

50

55

60

65

60

detection engine 34154, an application state categorizer 341c,
and/or an application traffic categorizer 341d.

Each of these engines or modules can track different
criterion for what is considered priority, time critical, back-
ground/foreground, or interactive/maintenance based on dif-
ferent wireless carriers. Different criterion may also exist for
different mobile device types (e.g., device model, manufac-
turer, operating system, etc.). In some instances, the user of
the mobile devices can adjust the settings or criterion
regarding traffic category and the proxy server 325 is able to
track and implement these user adjusted/configured settings.

In one embodiment, the traffic analyzer 336 is able to
detect, determined, identify, or infer, the activity state of an
application on one or more mobile devices (e.g., mobile
device 150 or 250) which traffic has originated from or is
directed to, for example, via the application state categorizer
341c¢ and/or the traffic categorizer 341d. The activity state
can be determined based on whether the application is in a
foreground or background state on one or more of the mobile
devices (via the application state categorizer 341c¢) since the
traffic for a foreground application vs. a background appli-
cation may be handled differently to optimize network use.

In the alternate or in combination, the activity state of an
application can be determined by the wirelessly connected
mobile devices (e.g., via the application behavior detectors
in the local proxies) and communicated to the proxy server
325. For example, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status at mobile devices
(e.g., by a backlight detector) or other software agents or
hardware sensors on the mobile device, including but not
limited to, resistive sensors, capacitive sensors, ambient
light sensors, motion sensors, touch sensors, etc. In general,
if the backlight is on, the traffic can be treated as being or
determined to be generated from an application that is active
or in the foreground, or the traffic is interactive. In addition,
if the backlight is on, the traffic can be treated as being or
determined to be traffic from user interaction or user activity,
or traffic containing data that the user is expecting within
some time frame.

The activity state can be determined from assessing,
determining, evaluating, inferring, identifying user activity
at the mobile device 250 (e.g., via the user activity module
215) and communicated to the proxy server 325. In one
embodiment, the activity state is determined based on
whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that
may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

The time criticality detection engine 34156 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from the host server 300 or proxy server 325,
or the application server (e.g., app server/content source
110). For example, time sensitive data can include, status
updates, stock information updates, IM presence informa-
tion, email messages or other messages, actions generated
from mobile gaming applications, webpage requests, loca-
tion updates, etc.

Data that is not time sensitive or time critical, by nature
of the content or request, can include requests to delete

US 9,444,752 B2

61

messages, mark-as-read or edited actions, application-spe-
cific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does
not frequently changing by nature, etc. In some instances
when the data is not time critical, the timing with which to
allow the traffic to be sent to a mobile device is based on
when there is additional data that needs to the sent to the
same mobile device. For example, traffic shaping engine 375
can align the traffic with one or more subsequent transac-
tions to be sent together in a single power-on event of the
mobile device radio (e.g., using the alignment module 378
and/or the batching module 377). The alignment module 378
can also align polling requests occurring close in time
directed to the same host server, since these request are
likely to be responded to with the same data.

In general, whether new or changed data is sent from a
host server to a mobile device can be determined based on
whether an application on the mobile device to which the
new or changed data is relevant, is running in a foreground
(e.g., by the application state categorizer 341c), or the
priority or time criticality of the new or changed data. The
proxy server 325 can send the new or changed data to the
mobile device if the application is in the foreground on the
mobile device, or if the application is in the foreground and
in an active state interacting with a user on the mobile
device, and/or whether a user is waiting for a response that
would be provided in the new or changed data. The proxy
server 325 (or traffic shaping engine 375) can send the new
or changed data that is of a high priority or is time critical.

Similarly, the proxy server 325 (or the traffic shaping
engine 375) can suppressing the sending of the new or
changed data if the application is in the background on the
mobile device. The proxy server 325 can also suppress the
sending of the new or changed data if the user is not waiting
for the response provided in the new or changed data;
wherein the suppressing is performed by a proxy server
coupled to the host server and able to wirelessly connect to
the mobile device.

In general, if data, including new or change data is of a
low priority or is not time critical, the proxy server can
waiting to transfer the data until after a time period, or until
there is additional data to be sent (e.g. via the alignment
module 378 and/or the batching module 377).

Client-Side Proxy

It is noted that, in the following, certain acronyms are
used for convenience. Their functional descriptions are
introduced throughout this disclosure as well as documents
cited herein.

Acronym Meaning

RR Responses to Requests
D Delay

RMP Rapid Manual Poll
RLP Rapid Long Poll

RI Request Interval

1T Idle Time

RT Response Time

LP Long Poll

FIG. 4A depicts a block diagram illustrating another
example of client-side components in a distributed proxy
and cache system, further including an extended caching
optimization engine.

FIG. 4B depicts a block diagram illustrating additional
components in the extended caching optimization engine
shown in the example of FIG. 4A.

10

15

20

25

30

35

40

45

50

55

60

65

62

It is noted that the functionalities of these modules
402-406 may be included, either partially or wholly, in the
one or more modules introduced in FIGS. 2A-2D. For
example, the optimization engine 401 can be merged with,
work as a portion of, communicate with, supplement, or
cooperate with the request/transaction manager 235, the
caching policy manager 245, the traffic shaping engine 255,
the connection manager 265, etc.

In accordance with one or more embodiments, the
extended caching optimization (ECO) engine 401 can detect
or determine various external, internal, or derived factors
using various detection, monitor, and pattern extraction
modules 402-408. Examples of these factors may include:
(1) determination of user inactivity (e.g., based on screen
state, motion sensors, and so forth; (2) determination of
radio availability; (3) prediction of user activity based on
previous patterns; or (4) network health state (e.g. conges-
tion).

Based on these factors (and/or based on different setting
levels of the configurable ECO settings, as mentioned ear-
lier), the optimization engine 401 can determine (or take
more chances in) whether it should continue to rely on one
or more particular data stored in the local cache 285. In some
embodiments, the determination can be probabilistic instead
of deterministic.

More specifically, to decide whether to refresh one or
more data in the cache 285, a cache freshness determination
module 420 can determine based on at least one or more of
(1) the ECO setting level 410, (2) the actual freshness of the
data, and (3) the device specific information including, for
example, whether the user is using the device, how impor-
tant the polling application is, whether the device is low in
battery or in a congested network, or whether the user is
driving, etc.

For purposes of discussion herein, “continuing to rely on
cache” means that the ECO algorithm (e.g., as implemented
in the optimization engine 401) continues to consider the
data stored in the cache are fresh and useable (a) when the
determination of freshness is unknown (e.g., where the
server that is monitoring the freshness is unable to retrieve
the resource to determine the freshness—but content may be
fresh), or (b) when the ECO algorithm knows that the
resource is not fresh, but when situational factors listed
above allow relaxing the strict freshness requirements and
taking more chances as either user is not believed to need the
data, or network resources need to be preserved.

Furthermore, in some embodiments, the optimization
engine 402 allows caching proxies (e.g., local proxy 105,
FIG. 1A client-side proxy 175, FIG. 1E) to serve data that
is not known to be fresh (or in some cases, known to be not
fresh). This technique can be applied to (a) resources cached
(e.g., in local cache 285) by the polling logics (not shown in
FIG. 4B for simplicity) and (b) situations where user/
network factors justify such behavior.

In one example, in order to determine the actual freshness
of a response (e.g., whether a data stored in local cache 285
is fresh or stale), the optimization engine 401 compares its
freshness lifetime to its age to determine if the response has
expired. These may be implemented by incorporating pro-
tocols and calculations as specified in the HI'TP/1.1 family
of standards. One specific example of expiration calculation
is specified in the section “13.2 Expiration Model” of the
Request for Comment (RFC) #2616 or 2068 (also known as
the “RFC 2616” or “RFC 2068”). The calculations of age,
freshness, and expiration can be employed by the optimi-
zation engine 401 as a factor or a basis (in addition to the
above mentioned factors including, for example, user activ-

US 9,444,752 B2

63

ity, radio state, mobile application characteristics, network
status, battery status, display/backlit state, etc) in determin-
ing whether to poll or refresh content stored in the local
cache 285.

Example Functions of Extended Caching and Behaviors
Under Different Setting Levels

In general, extended caching (which can be also referred
to herein as aggressive caching) techniques enable a system
(e.g., mobile device 101, 250 employing local proxy 105,
275, and/or host host server 111, 300 employing proxy
server 113, 325 (see also FIG. 5A-5B)) to take more risk in
keeping providing application with the cached content in
various situations described below.

Extended Caching: HTTP Non-Periodic Request

As part of normal operation, the Signaling Optimization
client (e.g., local proxy 105) caches resources on the device
(e.g., in cache 185) based on detecting a periodic application
request (such as via application behavior detector 236,
described above). By default, such cached resources are
served from cache only in response to application requests
that match the observed periodicity. Open Channel Signal-
ing Optimization identifies the opportunity to cache content
based on observation of recurring request-response patterns.
That is to say, request periodicity typically serves as a basis
of request-response pattern recognition. Both simple and
complex periodicities are detected.

However, the present embodiments recognize that appli-
cations can make “out-of-order” requests, and therefore the
present embodiments include an HTTP Non-periodic-re-
quest option which provides conditions upon which the
client serves cached resources in response to application
requests that are non-periodic.

More specifically, when application makes a request “out-
of-order” in context of the current polling pattern, local
proxy 105 and/or proxy server 113 do not know whether the
content has changed or not; however, given that periodic
polling is taking place, the ECO engine 107 and/or ECO
manager 115 can make the proxies 105, 113 take the risk by
not polling the third-party servers 119 for new data/update.
By default, local proxy 105 and/or proxy server 113 take this
risk when the screen is off or even when screen is off but the
radio is inactive as this is rather low risk.

In some embodiments, configuration parameters can be
adapted to adjust this. An example of behaviors under
different setting levels the present embodiments perform is
listed as follows:

Setting Behavior

0 Default behavior. Non-periodic requests are not served from
cache.

1 Non-periodic requests ARE served from cache when the screen
is not lit.

2 Non-periodic requests ARE served from cache when the screen
is not lit OR the radio is inactive.
3 Non-periodic requests are always served from cache.

For another example, the present embodiments recognize
that aggressive caching, especially responding to out-of-
order requests, can lead to application getting into a loop
making requests immediately when a response from cache is
provided, and such loop can go on infinitely and spiral out
of control. As such, the present disclosed embodiments are
designed to safeguard against such bad behavior

It is noted that, for convenience, a client (e.g., local local
proxy 105, 175, 275) of the distributed caching system can
be referred to herein as an “open channel client”, or “OC

10

15

20

25

30

35

40

45

50

55

60

65

64

client.” Similarly, a server (e.g., host server 111, 100, 300
hosting proxy server 113, 125, 325) of the distributed
caching system can be referred to herein as an “open channel
server”, or “OC server.” The client and the server individu-
ally or together implementing the distributed caching tech-
niques (including the Signal Optimization and Extended
Caching techniques) can be referred to as “open channel” or
“0C.”

In some additional or alternative embodiments, as the
aggressive pattern recognition above leads to recognizing
long polls that just happen to be getting a response from the
server early (e.g. a new email) as regular polls (to which an
OC client responds immediately), it caused conditions
where application makes a request, the OC client responds
immediately, and application makes immediately a new
request, and this loop continues. Without aggressive cach-
ing, this would only take place for very limited period of
time, as the OC server (e.g., proxy server 113, 325), while
polling for the resource, recognizes that the origin server
(e.g., third-party server 119A) no longer provides this
response, sends an invalidate to the client. Or, if the recog-
nized period is very long and server is polling at such long
interval (e.g. hours), and has not observed the change yet,
the requests from the application would have been consid-
ered out-of-order and passed to the network. However, now
combined with aggressive caching, this loop can continue
for hours, until user turns the screen on, and the invalidate
is processed (or the request is considered out-of-order).

Accordingly, the present embodiments include a safe-
guard module 440 which includes safeguard functionalities
to reduce or solve this issue. Module 440 includes two
submodules 440A and 440B for detecting this looping
behavior:

Starting to increase the response delay when immediate
same requests are observed, to avoid battery drain
(Rapid-poll—Battery Drain Safeguard)

Deactivate the aggressive caching feature to process the
invalidate and deactivate serving out-of-order requests
from cache (Temporarily Deactivation)

Rapid-poll—Battery Drain Safeguard: One specific
example is “Exchange Activesync,” or “EAS.” Without
current techniques, rapid polls and battery drain can be
caused by the distributed caching system. For example,
when OC would detect RMP (as the delays look more like
network latency, and the observed Rls are too large for an
RLP), and OC starts serving from cache immediately and
EAS immediately polls again, thereby getting the system in
a loop and drains the battery.

Accordingly, the ECO engine 401 includes a Rapid-poll
Battery Drain Safeguard module 440A that provides the
aforementioned distributed caching system with a rapid poll
safeguard mechanism. Safeguard module 440 detects rap-
idly caching Responses to Requests (RR) (from the appli-
cation polling) and starts delaying responses from the cache,
improving the battery life. This can be applicable to Rapid
Manual Poll (RMP), Rapid Long Poll (RLP) and Request
Interval (RI) polling classes.

These classes are different patterns for pattern recogni-
tion. RMP represents normal poll with request interval
shorter than a threshold (e.g., 60 seconds)), and RLP rep-
resents long poll, with response delay shorter than a thresh-
old (e.g., 60 seconds)). More details regarding these classes
are further introduced in, for example, U.S. patent applica-
tion Ser. No. 13/274,265, entitled “CACHING ADAPTED
FOR MOBILE APPLICATION BEHAVIOR AND NET-
WORK CONDITIONS,” filed Oct. 14, 2011, which is
incorporated herein by reference in its entirety.

US 9,444,752 B2

65

Additionally, the necessity for safeguard behavior can be
detected based on specified condition, which can be
described as “a hit that causes new request”.

For example, when arithmetic average of IT (idle time)
between two subsequent “hit” requests is smaller than
certain number (e.g., 15 sec), OC starts serving responses
from the cache with increased delay D with a default step
specified in code (e.g., 10 sec). OC tracks the application if
the delayed response is received successfully and the appli-
cation did not close the socket (e.g., no IN socket error and
app works correctly). The IN SOCKET closure typically
happens when: a) the application crash; b) the application
don’t accept the delay.

In case the socket was not closed, OC keeps increasing D
until max value (1.5*Dmin_for_LP) is reached. If the origi-
nally detected pattern was RI and max D was reached, OC
detects Long Poll (LP) and updates information about the
polling pattern on the server. If the originally detected
pattern was RMP or RLP, OC keeps HITting with max D
until pattern expiration. In case IN socket error was
observed, D is decreased with a step interval. If the socket
was closed two times in a row, OC cancels safeguard
mechanism for this poll. If the condition for safeguard
mechanism is met again, OC starts it over.

Temporary Deactivation: the present embodiments further
recognize cases where aggressive caching led to OC Client
ignoring the resource invalidation from the OC Server, while
the client application went into a loop of requesting the
resource continuously.

Accordingly, the ECO engine 401 includes a Temporary
Deactivation module 440B that detects this condition and
can temporarily deactivate aggressive caching for the given
RR. Any outstanding invalidate-with-cache or invalidate-
without-cache (e.g., invalidation commands sent from OC
server invalidating data stored in OC client’s cache, and
further indicating whether the OC server has the new data)
has to be applied immediately upon entering the temporary
deactivation mode. The aggressiveness should be re-acti-
vated on a consequent startpoll.

In addition to process outstanding invalidates, out-of-
order requests are to be passed to the network after entering
the temporary deactivation mode. This, in some embodi-
ments, can be re-activated not only on a subsequent startpoll,
but also if safeguard is deactivated.

Extended Caching: Screen State Change

In some embodiments, in the optimization engine 401’s
determination of whether the screen backlight state has
changed, a grace period is included that defines for how long
the screen has to be off before the state is considered to have
changed. The grace period setting can be a configurable
parameter. For example, a screen has to be off for X seconds
before the state is considered to have changed when the
setting is at the lowest level, and for Y seconds when the
setting is at the highest level.

Extended Caching: Domain Name Service (DNS) Cache
Entry (CE) Expiration

The present embodiments recognize that, from a practical
standpoint, it is often hard to predict or know what appli-
cation issues a DNS request (e.g., especially when the
request gets hidden when traversing through a certain OS
system such as Android), it would be desirable not to have
the DNS requests turn on the radio while the firewall (e.g.,
as configured by OC) blocking the actual application
request, thereby resulting in little resource saving because
the radio is already turned up due to the DNS request.

For example, for some particular applications (e.g., What-
sApp messenger application by WhatsApp Inc.), even

10

15

20

25

30

35

40

45

50

55

60

65

66

though the WhatApp application may be blocked by per-
sonal firewall rule as implemented by OC client, the appli-
cation is still able to send DNS request (e.g., to
“cl.whatsapp.net”) and blocked only when it was trying to
connect to that server.

Accordingly, the ECO engine 401 includes a DNS CE
Expiration module 450 that caches DNS requests more
aggressively to prevent unnecessary radio turn-ons triggered
by those DNS requests. In particular, besides being based on
when an DNS Cache Lookup Query (CLQ) is made to OC
client and on a typical time-to-live (TTL) parameter, the
DNS CE Expiration module 450 can adjust the expiration of
DNS cache entries stored in the cache based on the ECO
level settings and/or device specific information.

An example policy setting for controlling the client’s
behavior when invalidating DNS cache entries due to their
expiration is listed below.

Setting Behavior

0 regular behavior, DNS Cache Entry expire on DNS CLQ when
the TTL ends;

1 DNS Cache Entry expire on DNS CLQ when the TTL ends and
the screen backlight is on;

2 DNS Cache Entry expire on DNS CLQ when the TTL ends and
the screen backlight is on and radio is up;

3 DNS Cache Entry never expires.

Extended Caching: HTTP Invalidate-Without-Cache

As part of normal operation, the Signaling Optimization
client (e.g., local proxy 105) caches resources on the device
(e.g., in cache 185) and requests the Signaling Optimization
server (e.g., proxy server 113) to poll to ensure freshness of
a cached resource. If the server determines that a cached
resource has changed, the server may send an “invalidate-
without-cache” message (e.g., via a corresponding module
560 in the optimization manager 501) to the client. The
invalidate-without-cache message notifies the client that the
server is not able to verify the freshness of a cached resource
(invalidate) and that the client should contact the applica-
tion’s origin server directly for the next update (“-without-
cache”). The can happen when the OC server is not able to
retrieve any content from the original, third-party server, and
therefore it is hard to tell whether something has changed.

Accordingly, when server sends client an “invalidate w/o
cache” message, the present embodiments can take more
risk in keeping to provide application with the cached
content.

More specifically, upon receiving an invalidate-without-
cache message, the default client behavior then is to invali-
date the cached resource immediately. The Extended HTTP
Invalidate-without-cache setting, as implemented by an
“invalidate-without-cache” module 460 that is included in
the optimization engine 401, provides options for the con-
ditions upon which the client invalidates the cached
resource.

An example policy setting for controlling the client’s
behavior when “invalidate-without-cache” the cache entries
is listed below.

Setting Behavior

0 Default behavior. Cache entries are invalidated immediately
upon receipt of cache-invalidate message.

US 9,444,752 B2

-continued
Setting Behavior
1 Cache entries based on periodic application polling are

invalidated on cache lookup query with screen lit.
Cache entries based on application long-polls are invalided on
screen lit.

2 Cache entries based on periodic application polling are
invalidated on cache lookup query with screen lit AND
radio up.
Cache entries based on application long-polls are invalided on
screen lit AND radio up.

3 Invalidate-without-cache messages are ignored completely.

It is noted that, with “long polling” (see discussion
above), the client requests information from the server in a
similar way to a normal poll. However, if the server does not
have any information available for the client, instead of
sending an empty response, the server holds the request and
waits for some information to be available. Once the infor-
mation becomes available (or after a suitable timeout), a
complete response is sent to the client. The client will
normally then immediately re-request information from the
server, so that the server will almost always have an avail-
able waiting request that it can use to deliver data in
response to an event.

Extended Caching: HTTP Invalidate-with-Cache

As part of normal operation, the Signaling Optimization
client (e.g., local proxy 105) caches resources on the device
and requests the Signaling Optimization server (e.g., proxy
server 113) to poll to ensure freshness of a cached resource.
If the Signaling Optimization server determines that a
cached resource has been updated on the application server,
the Signaling Optimization server may cache a copy of the
updated resource locally and send an “invalidate-with-
cache” message (e.g., via a corresponding module 570 in the
optimization manager 501) to the client. The invalidate-
without-cache message notifies the client that the specified
resource has changed (invalidate) and that the Signaling
Optimization server has cached the changed resource
(“~with- cache”). The Signaling Optimization client may
choose to contact the Signaling Optimization server directly
to retrieve the updated resource.

That is to say, when server sends “invalidate-with-cache”
messages, it means that content as definitely changed, and
the present embodiments can take more risk in keeping to
provide application with the cached content.

More specifically, the present embodiments can delay
processing of this invalidate when screen is off (but process
when screen is on, even if radio is inactive), despite of
knowing that the content has changed, because it is deter-
mined that user does not need the content as the user is not
actively using the device (e.g., via device specific informa-
tion module 430).

As such, upon receiving an invalidate-with-cache mes-
sage, the default client behavior is to retrieve the updated
resource entry from the origin server upon the first occur-
rence entry of either the radio coming up or the application
requesting the resource. The Extended HTTP Invalidate-
with-cache setting, as implemented by an “invalidate-with-
cache” module 470 that is included in the optimization
engine 401, provides options for the conditions upon which
the Signaling Optimization client retrieves the remotely
cached resource entry from the Signaling Optimization
server.

An example policy setting for controlling the client’s
behavior when “invalidate-with-cache” the cache entries is
listed below.

10

15

20

25

30

35

40

45

50

55

60

65

68

Setting Behavior

0 Default behavior. Remote cache entry is retrieved on either radio
up OR application

1 Remote cache resources based on periodic application polling
are retrieved on cache lookup query and screen lit.

Remote cache resources based on application long-polls are
retrieved on screen lit.

2 Remote cache resources based on periodic application polling
are retrieved on cache lookup query and screen lit and radio up.
Remote cache resources based on application long-polls are
retrieved on screen lit and radio up.

3 Completely ignore invalidates.

In some embodiments, all the ignored invalidates can be
picked up as soon as the backlight turns on. Also, with the
highest aggressiveness level, some embodiments can
include an extra subscription state “already invalidated”
which would be treated as “polling” while the aggressive-
ness level is at highest, but would lead to an immediate
invalidate on a cache lookup query (CLQ) otherwise.

An ‘extra subscription state’ represents a subscription that
relates to a cached entry and subscription by the client to
server to poll for that cached entry to monitor its freshness.
It is the new subscription type that tells that the cache entry
has been invalidated, but the invalidate has not been pro-
cessed yet due to the aggressiveness setting.

Irregular Polling Pattern Recognition and Caching

The present embodiments recognize that some applica-
tions are to poll in a non-periodic fashion, which can lead to
OC client occasionally missing the requests and re-detecting
increasing RI patterns with shorter RI. Once the poll invali-
dates, OC client tries re-detecting the pattern based on the
recent request history, which leads to the same story repeat-
ing over and over.

Accordingly, in order to improve efficiency (among other
purposes), an Irregular Polling Pattern Recognition and
Caching (IPPRC) module 480 is included to persist the
information on the shortest observed RI across the invali-
dates. The IPPRC module 480 can activate under circum-
stances of upgrading an existing increasing pattern to
another increasing, with a shorter RI.

It is noted that, as previously mentioned, the Irregular
Polling Pattern Recognition and Caching module 480 can be
working as a part of the optimization 401, can be working
as a supplemental component of application behavior detec-
tor 236 (and/or submodules thereof such as the pattern
detector 237), and/or can be combined, merged, or separated
from other suitable modules/components in the local proxy
275.

More specifically, as aggressive caching typically only
applies to requests that are already being cached, The IPPRC
module 480 can detect patterns in any occasion where
multiple requests occur, even if the pattern would violate the
previous recognition rules where period 2 should be same or
longer than period 1.

In addition, IPPRC module 480°s can provide function-
ality which relates to “semi-long polls”, which is a pattern
that are identified where the pattern fluctuates between
normal polls and long polls. Typically, this would not be
recognized as a pattern at all. With IPPRC module 480, it
would get recognized as a long poll.

For one example, if the long poll delay parameter sent by
Exchange Activesync (EAS) doesn’t change (and get thus
normalized out), but the server just decides to respond
sooner every second time, IPPRC module 480 could start
caching at the longer interval, as the application should wait
for that time, and it doesn’t matter if the server responds

US 9,444,752 B2

69

faster, because the application would just issue a new poll
and continue. In some embodiments, the IPPRC module 440
use max response delay from event history to detect LP
pattern. In case of semi-long poll pattern behavior OC will
start polling after second long D in history

To further demonstrate how the functionality works,
example cases are provided below:

Test Cases

In general, to perform a test case, (1) OC client (e.g., in
forms of software) must be existing (e.g., by installation) on

70
the device; (2) a test tool (e.g., a proprietary test tool
“TTestTool,” as provided by SEVEN Networks, Inc.) should
be installed; (3) A test resource is needed for this test case
that returns the same response for all requests.

In general, to verify correct results, these steps should be
performed: (1) Open 7TestTool application and load the test
suite; (2) Start periodic request; and (3) Observe client log.

The following are the example test cases and the
responses.

Summary

Pattern/Delay

Result

Regression Test Cases

Detection of
Rapid Manual
Poll

Detection of
Rapid Long
Poll

Detection of
Long Poll

Detection of RI
with delay

Detection of RI
based polling

OC should
redetect RR
from Long Poll
to RI

OC shouldn’t
redetect RR
from Long Poll
to RI

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 35, 35, 35]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 35, 35, 35]
Delay [24, 21, 21, 21]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 70, 70]
Delay [68, 68, 68]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 70, 70, 70]
Delay [20, 10, 31]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 65, 65, 65]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 69, 71, 70, 70]
Delay [66, 11, 3, 0]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is
needed for this test case
that returns the same
response for all requests.
Pattern [0, 65, 65, 65]
Delay [35, 35, 34]

1. After 3rd request Rapid Manual Poll should be
detected.

2. After receiving of 3rd response RR should be
activated,

polling should start.

3. 4th request should be HITed with delay 0.

1. After 3rd request Rapid Long Poll should be
detected.

2. After receiving of 3rd response RR should be
activated,

polling should start.

3. 4th request should be HITed with delay 20.

1. After 2nd request Long poll pattern should be
detected with next value getRecentTO: recent TO =
68

2. After receiving of 2nd response RR should be
activated,

polling should start.

3. 3th request should be HITed with delay 68.

1. After 3rd request RI based pattern should be
detected.

2. After receiving of 3rd response RR should be
activated,

polling should start.

3. 4th request should be HITed with delay 0.

1. After 3rd request RI based polling should be
detected.

2. After receiving of 3rd response RR should be
activated,

polling should start.

3. 4th request should be HITed with delay 0.

1. After 2nd request Long poll should be detected.
2. Response delay of 2nd response with value 11
doesn’t match the current pattern.

3. 3rd request should be sent to TC for server side
revalidation. After 3rd request RI based polling
detected with interval: 68.

4. After receiving of 3rd response RR should be
activated,

polling should start.

5. 4th response should be HITed with delay 0.

1. After 3rd request RI based polling should be
detected.

2. After receiving of 3rd response RR should be
activated,

polling should start.

3. 4th request should be HITed with delay 0.

71

US 9,444,752 B2
72

-continued
Summary Pattern/Delay Result
OC should 1. Install OC client 1. After 3rd request Rapid Long Poll should be
redetect RR 2. Install latest available detected.
from Rapid 7TestTool. 2. After receiving of 3rd response RR should be
Long Poll to 3. A test resource is activated,
Long Poll needed for this test case polling should start.

that returns the same

response for all requests.
Pattern

[0, 35, 35, 35, 65, 65, 65, 65]
Delay

[21, 21, 25, 25, 65, 65, 65, 65]

3. 4th request should be HITed with delay 25.

4. 5th request should be HITed with delay 25.

5. Before 6th request
INVALIDATE__WO_CACHE should be received.
6. 6th request should be sent to TC for server side
revalidation. RI should be detected with interval:
70.

7. 7th request should be sent to TC for server side
revalidation. Long Poll should be detected.

8. After 7th response polling should start.

9. 8th request should be HITed.

Functional Test Cases

OC behavior

for requests

with pattern

[0, 65, 100, 35, 45,
65, 70, 80, 45, 67, 65,
100, 35, 45, 65, 70,
80, 45, 67]

OC behavior

for requests

with pattern

[0, 70, 2, 100, 35, 45,
10, 45, 35, 25, 67,
70, 2, 100, 35, 45,
10, 45, 35, 25, 67]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is

needed for this test case

that returns the same

response for all requests.
Pattern

[0, 65, 100, 35, 45, 65, 70, 80,
45, 67, 65, 100, 35, 45, 65, 70,
80, 45, 67]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is

needed for this test case

that returns the same
response for all requests.
Pattern

[0, 70, 2, 100, 35, 45, 10, 45, 35,
25, 67, 70, 2, 100, 35, 45, 10,
45, 35, 25, 67]

1. After 3rd request RI should be detected with
period 47.

2. After receiving of 3rd response RR should be
activated,

polling should start with interval 60.

3. 4th request should be sent to TC for server side
revalidation.

4. 5th request should be HITed.

5. 6th request should be HITed.

6. 7th request should be HITed.

7. 8th request should be HITed.

8. 9th request should be sent to TC for server side
revalidation.

9. 10th request should be HITed.

10. 11th request should be HITed.

11. 12th request should be HITed.

12. 13th request should be sent to TC for server
side revalidation.

13. 14th-17th request should be HITed.

14. 18th request should be sent to TC for server
side revalidation.

15. 19th request should be HITed.

1. After 3rd request RI should be detected with
period 70.

2. After receiving of 3rd response RR should be
activated,

polling should start with interval 70.

3. 4th request should be HITed.

4. 5th request should be sent to TC for server side
revalidation. Polling should start with new interval
60.

5. 6th request should be HITed.

6. 7th request should be HITed due to it were sent
in short period of time.

7. 8th request should be HITed.

8. 9th request should be sent to TC for server side
revalidation, temporary RMP should start.

9. 10th request should be HITed.

10. 11th request should be HITed.

11. 12th request should be HITed.

12. 13th request should be HITed due to it were
sent in short period of time.

13. 14th request should be HITed.

14. 15th request should be sent to TC for server
side revalidation. RMP expired.

15. 16th request should be HITed.

16. 17th request should be HITed due to it were
sent in short period of time.

17. 18th request should be HITed.

18. 19th request should be sent to TC for server
side revalidation. Temporary RMP should start.
19. 20th request should be HITed.

20. 21 th request should be HITed.

73

US 9,444,752 B2
74

-continued

Summary Pattern/Delay

Result

OC behavior

for requests

with pattern

[0, 155, 200, 80, 80,
200, 70, 70, 153, 13,
11, 170, 202, 155,
200, 80, 80, 200,
70, 70, 153, 13, 11,
170, 202]

1. Install OC client

2. Install latest available
7TestTool.

3. A test resource is

needed for this test case

that returns the same
response for all requests.
Pattern

[0, 155, 200, 80, 80, 200, 70,
70, 153, 13, 11, 170, 202, 155,
200, 80, 80, 200, 70, 70, 153,
13, 11, 170, 202]

1. After 3rd request RI should be detected with
period 132.

2. After receiving of 3rd response RR should be
activated, polling should start.

3. 4th request should be HITed.

4. 5th request should be sent to TC for server side
revalidation. Polling should start with new interval
60.

5. 6th request should be HITed.

6. 7th request should be HITed.

7. 8th request should be HITed.

8. 9th request should be HITed.

9. 10th request should be HITed due to it were sent
in short period of time.

10. 11th request should be HITed due to it were
sent in short period of time.

11. 12th-21th requests should be HITed.

12. 22th-23th requests should be HITed due to it
were sent in short period of time.

13. 24th-25th requests should be HITed.

OC behavior
for requests

1. Install OC client

2. Install latest available period 313.

with pattern 7TestTool.
[0, 350, 325, 400, 323, 3. A test resource is
345, 360, 300, needed for this test case

that returns the same

response for all requests.

Pattern

[0, 350, 325, 400, 323, 345, 360,
300, 398, 378, 350, 325,

400, 323, 345, 360, 300, 398,
378]

1. Install OC client

2. Install latest available

398, 378, 350, 325,
400, 323, 345, 360,
300, 398, 378]

OC behavior

for requests period 295.

with pattern 7TestTool.
[0, 300, 310, 296, 303, 3. A test resource is
299, 300, 308, needed for this test case

that returns the same

response for all requests.

Pattern

[0, 300, 310, 296, 303, 299, 300,
308, 307, 301, 296, 299,

305, 301, 294, 302]

307, 301, 296, 299,
305, 301, 294, 302]

1. After 3rd request RI should be detected with

2. After receiving of 3rd response RR should be
activated, polling should start.
3. 4th-19th requests should be HITed.

1. After 3rd request RI should be detected with

2. After receiving of 3rd response RR should be
activated, polling should start.
3. 4th-16th requests should be HITed.

The CLQ is a client-internal interface to check from the
cache that what is the status of the subscription—to under-
stand whether we have response for a given request in the
cache, and is it ok to serve it to the application.

Heterogenous Cache Service and Categorization of
Responses

The present embodiments recognize that certain requests/
responses can be categorized (e.g., as “1-1-1-1-2-2-2-2” and
“0-0-0-0-1-0-0-0” types), and they can be served with the
response from cache based on their categorizations, even if
polling is not ongoing, based on:

for one type (e.g., “1-1-1-1-2-2-2-2”) return the latest

response from the network,

for another type (e.g., “0-0-0-0-1-0-0-0") return the latest

cached result.

Accordingly, the optimization engine 401 can include a
heterogenous cache service module 490 that expand the
scope of aggressive caching to situations where caching of
a specific response has not taken place. For example, het-
erogenous cache service module 490 can categorize appli-
cations (e.g., based on their requests, and responses to those
requests from corresponding third-party servers) and the
data (e.g., responses) currently stored in the cache. Heterog-
enous cache service module 490 can determine if one cached
response can be used to serve another application’s request.
As used herein, the term “heterogenous” means “out of its

40

45

50

55

60

65

origin,” and in context of distributed caching system, it
means that the cached response being served to “an appli-
cation that is out of its original application™ in addition to or
in lieu of'its own, original application; for example, a cached
response for Application-A being served to Application B
(e.g., providing that they are determined to be in the same
category and thus suitable for this technique).

More specifically, according to some embodiments, het-
erogenous cache service module 490 can identify content
that could be served from cache during the aggressive
caching, even if it is not being cached at the moment. In
some embodiments, heterogenous cache service module 490
can store a previously cached content, known now to be
stale, to be served at a later date. Some embodiments of
heterogenous cache service module 490 can identify
requests that are substantially the same, whose responses
could be used to serve another request. Further, heterog-
enous cache service module 490 can identify request types
for which we can safely serve the previous response before
aggressive caching started. In one embodiment, heterog-
enous cache service module 490 may include submodules,
such as a cache categorization module 490 A for categorizing
cached data and an application categorization module 490B
for categorizing applications.

Delaying Long Poll Responses

The present embodiments recognize that it can be ben-
eficial to delay delivery of long poll responses from the

US 9,444,752 B2

75

network to slow down interaction between the application
and the content server. The present embodiments further
recognize that, even without caching, it is possible to slow
down the interaction between application and server by
holding on to a response from the server—we can know how
long the application waits either by observing past pattern,
or by reading the information from the request that the
application makes—as it does convey this information to the
server, so that the server knows when it must respond to not
time out the application. This technique can serve, for
example, as an addition or an alternative to aggressive
caching.

Accordingly, in some embodiments, a long poll response
delay module 495 can identify the longest possible delay by
using a protocol parsing module 495A to parse the protocol
(the request typically has the long poll delay the application
is willing to wait). In some embodiments, long poll response
delay module 495 can identify the longest possible delay by
using a previous transactions observing module 495B to
observe the previous transactions to find the longest suc-
cessful long poll and using its length to imply the longest
possible delay.

Then, long poll response delay module 495 can tune
shorter this delay based on the situation to provide different
levels of aggressiveness. Similarly, the aforementioned
aggressive caching techniques can be tuned less aggressive
by defining maximum period of postponing processing of an
invalidation, or observing activity in some of the output
interfaces (such as a notification LED or sound system)
when new content is delivered.

It is worth noting that the present embodiments acknowl-
edge that there may be little value in delaying long poll
responses when aggressive caching is in use—as aggressive
caching does capture almost all of the benefits already. Thus,
when the aggressive caching is operational, long poll
response delay module 495 can function as a “friendlier”
alternative option for aggressive caching of long polls—
there delaying the responses would provide a solution where
new data from long polls gets delayed less than with
aggressive caching. Similar effect could be achieved by
introducing some maximum delay to processing the invali-
dation.

Nonetheless, when the screen is ON and aggressive
caching is not operational, delaying the long poll responses
(and serving cached responses) would provide significant
optimization improvements. However, this would be
directly visible to the user as well, as the user is actively
using the device, but new data is delayed. In some embodi-
ments, this technique can be implemented as a part of
congestion management (as compared to being used as a
global optimization policy).

As such, this technique can be seen as extending aggres-
sive caching to when the screen is on. By serving user stale
data from cache, carriers can benefit from this technique as
it provides a way to alleviate congestion and keep as many
users as satisfactory as possible.

As mentioned, long poll response delay module 495 can
go hand in hand with congestion management offering and
it could be offered as one option for managing congestion
with other options being aggressive caching and maybe
going as far as blocking apps.

Note that, according to the embodiments disclosed herein,
this technique applies delaying on client only; it does not
consider delaying at the server (e.g., proxy-server) which
although valid and probably beneficial would need to have
additional considerations, as the server doesn’t know
whether the user is active or not.

10

15

20

25

30

35

40

45

50

55

60

65

76

Server-Side Proxy

FIG. 5A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system, further including an extended caching optimization
manager.

FIG. 5B depicts a block diagram illustrating additional
components in the extended caching optimization manager
shown in the example of FIG. SA.

Some embodiments of the ECO manager, such as opti-
mization manager 501 as illustrated in FIG. 5B, can function
as a complementary part to the ECO engine 401 of FIG. 4A.
For example, the optimization manager 501 can include a
device specific information module 530 to receive informa-
tion (e.g., as gathered by modules 402-406 of FIG. 4B) that
are specific to the device, and the cache freshness determi-
nation module 520 can decide whether to refresh cache (e.g.,
from a third-party server) and/or whether to feed a certain
data to the client-proxy based on device specific informa-
tion, the actual freshness of the data in the cache 335, and the
ECO setting level 510, which can be a uniform setting across
all clients served by the server-proxy, or can be device
specific, application specific, user specific, group specific, or
any suitable combination of above.

Alternatively, the optimization manager 501 can have
similar modules as the optimization engine 401 and func-
tions in a similar way as described above with respect to
FIGS. 4A-4B. In some embodiments, ECO manager 501
may include a safeguard module 540 which includes safe-
guard functionalities and a DNS CE expiration module 550
that caches DNS requests more aggressively to prevent
unnecessary radio power-ups and activations triggered by
those DNS requests.

FIG. 6 shows a diagrammatic representation of a machine
in the example form of a computer system within which a set
of instructions, for causing the machine to perform any one
or more of the methodologies discussed herein, may be
executed.

In the example of FIG. 6, the computer system 600
includes a processor 602, memory 604, non-volatile memory
606, and a network interface device 608 for communicating
with a network 610. Various common components (e.g.,
cache memory) are omitted for illustrative simplicity. The
computer system 600 is intended to illustrate a hardware
device on which any of the components depicted and/or
described in this specification can be implemented. The
computer system 600 can be of any applicable known or
convenient type. The components of the computer system
600 can be coupled together via a bus or through some other
known or convenient device.

Processor 602 may be, for example, a conventional micro-
processor such as an Intel Pentium microprocessor or
Motorola power PC microprocessor. One of skill in the
relevant art will recognize that the terms “machine-readable
(storage) medium” or “computer-readable (storage)
medium” include any type of device that is accessible by the
processor.

Memory 604 may be coupled to processor 602 by, for
example, a bus 612. Memory 604 can include, by way of
example but not limitation, random access memory (RAM),
such as dynamic RAM (DRAM) and static RAM (SRAM).
The memory can be local, remote, or distributed.

Bus 612 may also couple processor 602 to non-volatile
memory 606 and to a drive unit 614. Non-volatile memory
606 may be, for example, a magnetic floppy or hard disk, a
magnetic-optical disk, an optical disk, a read-only memory
(ROM), such as a CD-ROM, EPROM, or EEPROM, a
magnetic or optical card, or another form of storage for large

US 9,444,752 B2

77

amounts of data. Some of this data is often written, by a
direct memory access process, into memory during execu-
tion of software in the computer 600. The non-volatile
storage can be local, remote, or distributed. Non-volatile
memory 606 is optional because systems can be created with
all applicable data available in memory. A typical computer
system may include at least a processor, memory, and a
device (e.g., a bus) coupling the memory to the processor.

Software is typically stored in the non-volatile memory
and/or the drive unit, such as in a machine-readable (storage)
medium 616. Software usually includes a set of instructions
618 that cause processor 602 to perform specific tasks.
Indeed, for large programs, it may not even be possible to
store the entire program in the memory. Nevertheless, it
should be understood that for software to run, if necessary,
it is moved to a computer readable location appropriate for
processing, and for illustrative purposes, that location is
referred to as “memory”. Thus, instructions 618 may be
moved into instruction memory 620 within processor 602,
instruction memory 622 within main memory 604, or both.
Even when software is moved to the memory for execution,
the processor typically make use of hardware registers to
store values associated with the software, and local cache
that, ideally, serves to speed up execution. As used herein, a
software program is assumed to be stored at any known or
convenient location (from non-volatile storage to hardware
registers) when the software program is referred to as
“implemented in a computer-readable medium.” A processor
is considered to be “configured to execute a program” when
at least one value associated with the program is stored in a
register readable by the processor.

The bus also couples processor 602 to network interface
device 608. The interface can include one or more of a
modem or network interface. It will be appreciated that a
modem or network interface can be considered to be part of
the computer system. The interface can include an analog
modem, isdn modem, cable modem, token ring interface,
satellite transmission interface (e.g. “direct PC”), or other
interfaces for coupling a computer system to other computer
systems. The interface can include one or more input and/or
output devices. The I/O devices can include, by way of
example but not limitation, a keyboard, a mouse or other
pointing device, disk drives, printers, a scanner, and other
input and/or output devices, including a display device. The
display device can include, by way of example but not
limitation, a cathode ray tube (CRT), liquid crystal display
(LCD), or some other applicable known or convenient
display device. For simplicity, it is assumed that controllers
of any devices not depicted in the example of FIG. 8 reside
in the interface.

In one embodiment, computer system 600 may include
one or more of the following: a video display 624 (e.g., a
screen or monitor), an alphanumeric input device 626 (e.g.,
a keyboard), a cursor control device 628 (e.g., a mouse or
touch screen), and a signal generator 630 (e.g., a speaker or
audio output).

In operation, the computer system 600 can be controlled
by operating system software that includes a file manage-
ment system, such as a disk operating system. One example
of operating system software with associated file manage-
ment system software is the family of operating systems
known as Windows® from Microsoft Corporation of Red-
mond, Wash., and their associated file management systems.
Another example of operating system software with its
associated file management system software is the Linux
operating system and its associated file management system.
The file management system is typically stored in the

25

30

35

40

45

50

78

non-volatile memory and/or drive unit and causes the pro-
cessor to execute the various acts required by the operating
system to input and output data and to store data in the
memory, including storing files on the non-volatile memory
and/or drive unit.

Some portions of the detailed description may be pre-
sented in terms of algorithms and symbolic representations
of operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the methods of some embodiments. The required
structure for a variety of these systems will appear from the
description below. In addition, the techniques are not
described with reference to any particular programming
language, and various embodiments may thus be imple-
mented using a variety of programming languages.

In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine
in a client-server network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a laptop computer, a
set-top box (STB), a personal digital assistant (PDA), a
cellular telephone, an iPhone, a Blackberry, a processor, a
telephone, a web appliance, a network router, switch or
bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine.

While the machine-readable medium or machine-readable
storage medium is shown in an exemplary embodiment to be
a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database, and/or associated caches and

US 9,444,752 B2

79

servers) that store the one or more sets of instructions. The
term “machine-readable medium” and “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing, encoding or carrying a set of
instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies
of the presently disclosed technique and innovation.

In general, the routines executed to implement the
embodiments of the disclosure, may be implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions referred
to as “computer programs.” The computer programs typi-
cally comprise one or more instructions set at various times
in various memory and storage devices in a computer, and
that, when read and executed by one or more processing
units or processors in a computer, cause the computer to
perform operations to execute elements involving the vari-
ous aspects of the disclosure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or
computer-readable media used to actually effect the distri-
bution.

Further examples of machine-readable storage media,
machine-readable media, or computer-readable (storage)
media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy
and other removable disks, hard disk drives, optical disks
(e.g., Compact Disk Read-Only Memory (CD ROMS),
Digital Versatile Disks, (DVDs), etc.), among others, and
transmission type media such as digital and analog commu-
nication links.

FIG. 7 depicts a flowchart illustrating an exemplary
process for distributed caching of information using
extended caching optimization according to an embodiment
of the subject matter described herein. In the embodiment
illustrated in FIG. 7, the method includes, at a mobile device
for operating in a wireless network, the device including a
local proxy for monitoring requests issued from an applica-
tion located within the device to an external entity not
located within the device and for storing, in a local cache,
responses to the monitored requests received from the
external entity, identifying a request as one that meets a first
criterion for optimization (step 700).

In response to identifying the request as one that meets a
first criterion for optimization, an extended caching optimi-
zation is applied (step 702). Applying an extended caching
optimization includes preventing the identified request from
being transmitted to the external entity and providing a
response to the identified request from the local cache.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that
is to say, in the sense of “including, but not limited to.” As
used herein, the terms “connected,” “coupled,” or any vari-
ant thereof, means any connection or coupling, either direct
or indirect, between two or more elements; the coupling of
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, shall refer to this application as a whole
and not to any particular portions of this application. Where
the context permits, words in the above Detailed Description

30

35

40

45

55

80

using the singular or plural number may also include the
plural or singular number respectively. The word “or,” in
reference to a list of two or more items, covers all of the
following interpretations of the word: any of the items in the
list, all of the items in the list, and any combination of the
items in the list.

The above detailed description of embodiments of the
disclosure is not intended to be exhaustive or to limit the
teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines hav-
ing steps, or employ systems having blocks, in a different
order, and some processes or blocks may be deleted, moved,
added, subdivided, combined, and/or modified to provide
alternative or subcombinations. Each of these processes or
blocks may be implemented in a variety of different ways.
Also, while processes or blocks are at times shown as being
performed in series, these processes or blocks may instead
be performed in parallel, or may be performed at different
times. Further any specific numbers noted herein are only
examples: alternative implementations may employ differ-
ing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system
described above. The elements and acts of the various
embodiments described above can be combined to provide
further embodiments.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects
of'the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can be made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how
detailed the above appears in text, the teachings can be
practiced in many ways. Details of the system may vary
considerably in its implementation details, while still being
encompassed by the subject matter disclosed herein. As
noted above, particular terminology used when describing
certain features or aspects of the disclosure should not be
taken to imply that the terminology is being redefined herein
to be restricted to any specific characteristics, features, or
aspects of the disclosure with which that terminology is
associated. In general, the terms used in the following claims
should not be construed to limit the disclosure to the specific
embodiments disclosed in the specification, unless the above
Detailed Description section explicitly defines such terms.
Accordingly, the actual scope of the disclosure encompasses
not only the disclosed embodiments, but also all equivalent
ways of practicing or implementing the disclosure under the
claims.

While certain aspects of the disclosure are presented
below in certain claim forms, the inventors contemplate the
various aspects of the disclosure in any number of claim
forms. For example, while only one aspect of the disclosure
is recited as a means-plus-function claim under 35 U.S.C.
§112, § 6, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being
embodied in a computer-readable medium. (Any claim

US 9,444,752 B2

81
intended to be treated under 35 U.S.C. §112, 9| 6 begins with
the words “means for”.) Accordingly, the applicant reserves
the right to add additional claims after filing the application
to pursue such additional claim forms for other aspects of the
disclosure.

Embodiments

The subject matter disclosed herein includes, but is not
limited to, the following embodiments:

1. A method for distributed caching of information using
extended caching optimization, the method including, at a
mobile device for operating in a wireless network, the device
including a local proxy for monitoring requests issued from
an application located within the device to an external entity
not located within the device and for storing, in a local
cache, responses to the monitored requests received from the
external entity, identifying a request as one that meets a first
criterion for optimization, and, in response to such identi-
fication, applying an extended caching optimization. Apply-
ing an extended caching optimization includes preventing
the identified request from being transmitted to the external
entity, and providing a response to the identified request
from the local cache.

2. The method of embodiment 1 where the first criterion
for optimization includes a determination that the request
matches an observed periodicity.

3. The method of embodiment 2 where the observed
periodicity comprises a simple periodicity or a complex
periodicity.

4. The method of embodiment 1 where, responsive to a
detection by the local proxy of a repetition of a request-
response interaction between the application and the local
proxy that exceeds a threshold rate, applying a traffic calm-
ing technique to signaling messages related to the applica-
tion.

5. The method of embodiment 4 where applying the traffic
calming technique includes increasing, by the local proxy, a
delay between receiving the request from the application and
providing the cached response to the application.

6. The method of embodiment 4 including, responsive to
a detection that the application terminates a connection to
the external entity as a result of an increased delay between
sending the request and receiving the cached response,
decreasing, by the local proxy, the delay between receiving
a request from the application and providing a cached
response to the application.

7. The method of embodiment 6 including, responsive to
a determination that the application has terminated the
connection to the external entity more than a threshold
number of times, terminating the traffic calming technique
being applied to signaling messages related to the applica-
tion.

8. The method of embodiment 1 where, responsive to a
detection by the local proxy that the application is requesting
content that has been invalidated, terminating the extended
caching optimization for that application.

9. The method of embodiment 4 including maintaining,
by the local proxy, a value of the shortest request interval
(RI) between successive requests from the application.

10. The method of embodiment 9 including using the
maintained value of the shortest RI to identify a non-
periodic request as being associated with the application.

11. The method of embodiment 4 including maintaining,
by the local proxy, a value of the longest response delay
(RD) observed between a request from the application and
a response to the request from the external entity.

10

15

20

25

30

35

40

45

50

55

60

65

82

12. The method of embodiment 11 including using the
maintained value of the longest RD to identify a request/
response interaction as a long-poll interaction for the appli-
cation.

13. The method of embodiment 12 including using the
maintained value of the longest RD as the polling frequency
during extended caching optimization for the application.

14. The method of embodiment 1 where the first criterion
for optimization includes a determination that the request
occurred while the mobile device is in a target state.

15. The method of embodiment 14 where the target state
includes a display of the mobile device is not lit, a radio
circuit of the mobile device is not active, a power consump-
tion of the mobile device is below a threshold value, and/or
an absence of user activity for longer than a threshold
period.

16. The method of embodiment 14 where the first crite-
rion for optimization is selectable by a user of the mobile
device.

17. The method of embodiment 1 where the identified
request comprises a domain name service (DNS) request.

18. The method of embodiment 17 including not termi-
nating the extended caching optimization of the DNS
request until after a threshold time to live (TTL).

19. The method of embodiment 17 including not termi-
nating the extended caching optimization of the DNS
request until after a threshold time to live (TTL) and a
determination that the screen is lit.

20. The method of embodiment 17 including not termi-
nating the extended caching optimization of the DNS
request until after a threshold time to live (TTL), a deter-
mination that the screen is lit, and a determination that the
radio transceiver is powered on or activated.

21. The method of embodiment 1 where, responsive to a
detection by the local proxy of a repetition of a request-
response interaction between the application and the local
proxy that exceeds a threshold rate, applying a traffic calm-
ing technique to signaling messages related to the applica-
tion.

22. The method of embodiment 1 where identification of
a request as one that meets a first criterion for optimization
includes identification based on a characteristic of the
request, a characteristic of the requested data, and/or a
characteristic of the application making the request.

23. The method of embodiment 1 including, at a proxy
server located external to the mobile device and for receiv-
ing requests from the mobile device, forwarding the requests
to content or service providers, receiving from the content or
service providers responses to the forwarded requests, and
providing the responses back to the mobile device: storing,
in a server cache, copies of the forwarded requests, storing,
in the server cache, copies of the received responses to the
forwarded requests, and responsive to identifying a request/
response pair as one that meets a second criterion for
optimization, preventing the response from being provided
back to the mobile device.

24. The method of embodiment 23 where, for each
request/response pair identified as meeting a criterion for
optimization, the method includes issuing, by the proxy
server, a subsequent request to the content or service pro-
vider on behalf of the mobile device, receiving a reply to the
subsequent request, and determining whether to provide or
not provide the reply back to the mobile device and provid-
ing or not providing the reply according to the determina-
tion.

25. The method of embodiment 24 where providing or not
providing the reply according to the determination includes

US 9,444,752 B2

83

providing the reply to mobile device responsive to a deter-
mination that the reply differs from a received response
stored in the server cache, a determination that the reply has
a high priority, and/or a determination that the reply includes
time critical data.

26. The method of embodiment 23 including, at the proxy
server, responsive to a determination that the reply differs
from a received response stored in the server cache, indi-
cating to the local proxy that the cached resource has
changed.

27. The method of embodiment 26 where the local cache
is refreshed from the external entity immediately.

28. The method of embodiment 26 where the local cache
is not refreshed from the external entity until the screen is lit.

29. The method of embodiment 26 where the local cache
is not refreshed from the external entity until the screen is lit
and the radio transceiver is powered on or activated.

30. The method of embodiment 26 including, at the local
proxy, responsive to receipt of the indication that cached
resource has changed, invalidating the cached resource
immediately, invalidating the cached resource when the
screen is lit, invalidating the cached resource when the
screen is lit and the radio transceiver is powered on or
activated, and/or ignoring the indication.

31. The method of embodiment 30 further including
instructing the application to request and receive data from
the external entity.

32. The method of embodiment 31 including providing a
response to the request from the local cache instead of from
the external entity.

33. A system for distributed caching of information using
extended caching optimization, the system including a
mobile device for operating in a wireless network, where the
device includes a local cache and a local proxy for moni-
toring requests issued from an application located within the
device to an external entity not located within the device and
for storing, in the local cache, responses to the monitored
requests received from the external entity, where the local
proxy is configured to identify a request as one that meets a
first criterion for optimization and apply an extended cach-
ing optimization, and where applying an extended caching
optimization includes preventing the identified request from
being transmitted to the external entity, and providing a
response to the identified request from the local cache.

34. The system of embodiment 33 where the first criterion
for optimization includes a determination that the request
matches an observed periodicity.

35. The system of embodiment 33 where the observed
periodicity comprises a simple periodicity or a complex
periodicity.

36. The system of embodiment 33 where the local proxy
is configured to detect a repetition of a request-response
interaction between the application and the local proxy that
exceeds a threshold rate and apply a traffic calming tech-
nique to signaling messages related to the application.

37. The system of embodiment 36 where applying the
traffic calming technique includes increasing, by the local
proxy, a delay between receiving the request from the
application and providing the cached response to the appli-
cation.

38. The system of embodiment 37 where, responsive to a
detection that the application terminates a connection to the
external entity as a result of an increased delay between
sending the request and receiving the cached response, the
local proxy decreases the delay between receiving a request
from the application and providing a cached response to the
application.

10

15

20

25

30

35

40

45

50

55

60

65

84

39. The system of embodiment 38 where, responsive to a
determination that the application has terminated the con-
nection to the external entity more than a threshold number
of times, the local proxy terminates the traffic calming
technique being applied to signaling messages related to the
application.

40. The system of embodiment 33 where, responsive to a
detection that the application is requesting content that has
been invalidated, the local proxy terminates the extended
caching optimization for that application.

41. The system of embodiment 36 where the local proxy
maintains a value of the shortest request interval (RI)
between successive requests from the application.

42. The system of embodiment 41 where the local proxy
uses the maintained value of the shortest RI to identify a
non-periodic request as being associated with the applica-
tion.

43. The system of embodiment 36 where the local proxy
maintains a value of the longest response delay (RD)
observed between a request from the application and a
response to the request from the external entity.

44. The system of embodiment 43 where the local proxy
uses the maintained value of the longest RD to identify a
request/response interaction as a long-poll interaction for the
application.

45. The system of embodiment 44 where the local proxy
uses the maintained value of the longest RD as the polling
frequency during extended caching optimization for the
application.

46. The system of embodiment 33 where the first criterion
for optimization includes a determination that the request
occurred while the mobile device is in a target state.

47. The system of embodiment 46 where the target state
includes a display of the mobile device is not lit, a radio
circuit of the mobile device is not active, a power consump-
tion of the mobile device is below a threshold value, and/or
an absence of user activity for longer than a threshold
period.

48. The system of embodiment 46 where the first criterion
for optimization is selectable by a user of the mobile device.

49. The system of embodiment 33 where the identified
request comprises a domain name service (DNS) request.

50. The system of embodiment 49 where the local proxy
does not terminate the extended caching optimization of the
DNS request until after a threshold time to live (TTL).

51. The system of embodiment 49 where the local proxy
does not terminate the extended caching optimization of the
DNS request until after a threshold time to live (TTL) and
a determination that the screen is lit.

52. The system of embodiment 49 where the local proxy
does not terminate the extended caching optimization of the
DNS request until after a threshold time to live (TTL), a
determination that the screen is lit, and a determination that
the radio transceiver is powered on or activated.

53. The system of embodiment 33 where, responsive to a
detection of a repetition of a request-response interaction
between the application and the local proxy that exceeds a
threshold rate, the local proxy applies a traffic calming
technique to signaling messages related to the application.

54. The system of embodiment 33 where identification of
a request as one that meets a first criterion for optimization
includes identification based on a characteristic of the
request, a characteristic of the requested data, and/or a
characteristic of the application making the request.

55. The system of embodiment 33 including a proxy
server, located external to the mobile device, that receives
requests from the mobile device, forwards the requests to

US 9,444,752 B2

85

content or service providers, receives from the content or
service providers responses to the forwarded requests, pro-
vides the responses back to the mobile device, stores, in a
server cache, copies of the forwarded requests, stores, in the
server cache, copies of the received responses to the for-
warded requests, identifies a request/response pair as one
that meets a second criterion for optimization, and, respon-
sive to identifying a request/response pair as one that meets
a second criterion for optimization, prevents the response
from being provided back to the mobile device.

56. The system of embodiment 55 where, for each
request/response pair identified as meeting a criterion for
optimization, the proxy server issues a subsequent request to
the content or service provider on behalf of the mobile
device, receives a reply to the subsequent request, deter-
mines whether to provide or not provide the reply back to the
mobile device, and provides or not provides the reply
according to the determination.

57. The system of embodiment 56 where the proxy server
provides or not provides the reply based on a determination
that the reply differs from a received response stored in the
server cache, a determination that the reply has a high
priority, and/or a determination that the reply includes time
critical data.

58. The system of embodiment 55 where, responsive to a
determination that the reply differs from a received response
stored in the server cache, the proxy server indicates to the
local proxy that the cached resource has changed.

59. The system of embodiment 58 where, in response to
receiving from the proxy server the indication that the
cached resource has changed, the local cache is refreshed
from the external entity immediately.

60. The system of embodiment 58 where, in response to
receiving from the proxy server the indication that the
cached resource has changed, the local cache is not refreshed
from the external entity until the screen is lit.

61. The system of embodiment 58 where, in response to
receiving from the proxy server the indication that the
cached resource has changed, the local cache is not refreshed
from the external entity until the screen is lit and the radio
transceiver is powered on or activated.

62. The system of embodiment 58 where the local proxy,
responds to receipt of the indication that cached resource has
changed by invalidating the cached resource immediately,
invalidating the cached resource when the screen is lit,
invalidating the cached resource when the screen is lit and
the radio transceiver is powered on or activated, or ignoring
the indication.

63. The system of embodiment 62 where the local proxy
instructs the application to request and receive data from the
external entity.

64. The system of embodiment 62 where the local proxy
provides a response to the request from the local cache
instead of from the external entity.

What is claimed is:

1. A method for distributed caching of information using
extended caching optimization, the method comprising:

at a mobile device for operating in a wireless network, the

device including a local proxy for monitoring requests

issued from an application located within the device to

an external entity not located within the device and for

storing, in a local cache, responses to the monitored

requests received from the external entity:

identifying a request as one that meets a first criterion
for optimization; and

in response to identifying the request as one that meets
a first criterion for optimization, applying an

10

15

20

25

30

35

40

45

50

55

60

65

86

extended caching optimization, wherein applying an

extended caching optimization includes:

preventing the identified request from being trans-
mitted to the external entity; and

providing a response to the identified request from
the local cache.

2. The method of claim 1 wherein the first criterion for
optimization includes a determination that the request
matches an observed periodicity.

3. The method of claim 2 wherein the observed period-
icity comprises a simple periodicity or a complex periodic-
ity.

4. The method of claim 1 wherein, responsive to a
detection by the local proxy of a repetition of a request-
response interaction between the application and the local
proxy that exceeds a threshold rate, applying a traffic calm-
ing technique to signaling messages related to the applica-
tion.

5. The method of claim 4 wherein applying the traffic
calming technique includes increasing, by the local proxy, a
delay between receiving the request from the application and
providing the cached response to the application.

6. The method of claim 4 including, responsive to a
detection that the application terminates a connection to the
external entity as a result of an increased delay between
sending the request and receiving the cached response,
decreasing, by the local proxy, the delay between receiving
a request from the application and providing a cached
response to the application.

7. The method of claim 6 including, responsive to a
determination that the application has terminated the con-
nection to the external entity more than a threshold number
of times, terminating the traffic calming technique being
applied to signaling messages related to the application.

8. The method of claim 1 wherein, responsive to a
detection by the local proxy that the application is requesting
content that has been invalidated, terminating the extended
caching optimization for that application.

9. The method of claim 4 including maintaining, by the
local proxy, a value of the shortest request interval (RI)
between successive requests from the application.

10. The method of claim 9 including using the maintained
value of the shortest RI to identify a non-periodic request as
being associated with the application.

11. The method of claim 4 including maintaining, by the
local proxy, a value of the longest response delay (RD)
observed between a request from the application and a
response to the request from the external entity.

12. The method of claim 11 including using the main-
tained value of the longest RD to identify a request/response
interaction as a long-poll interaction for the application.

13. The method of claim 12 including using the main-
tained value of the longest RD as the polling frequency
during extended caching optimization for the application.

14. The method of claim 1 wherein the first criterion for
optimization is selectable by a user of the mobile device.

15. A system for distributed caching of information using
extended caching optimization, the system including:

a mobile device for operating in a wireless network, the

device including:

a local cache; and

a local proxy for monitoring requests issued from an
application located within the device to an external
entity not located within the device and for storing,
in the local cache, responses to the monitored
requests received from the external entity,

US 9,444,752 B2

87

wherein the local proxy is configured to identify a
request as one that meets a first criterion for optimi-
zation and apply an extended caching optimization,
and

wherein applying an extended caching optimization
includes preventing the identified request from being
transmitted to the external entity, and providing a
response to the identified request from the local
cache.

16. The system of claim 15 wherein the first criterion for
optimization includes a determination that the request
matches an observed periodicity.

17. The system of claim 15 wherein the observed peri-
odicity comprises a simple periodicity or a complex peri-
odicity.

18. The system of claim 15 wherein the local proxy is
configured to detect a repetition of a request-response inter-
action between the application and the local proxy that
exceeds a threshold rate and apply a traffic calming tech-
nique to signaling messages related to the application.

19. The system of claim 18 wherein applying the traffic
calming technique includes increasing, by the local proxy, a
delay between receiving the request from the application and
providing the cached response to the application.

20. The system of claim 19 wherein, responsive to a
detection that the application terminates a connection to the
external entity as a result of an increased delay between
sending the request and receiving the cached response, the
local proxy decreases the delay between receiving a request
from the application and providing a cached response to the
application.

21. The system of claim 20 wherein, responsive to a
determination that the application has terminated the con-
nection to the external entity more than a threshold number
of times, the local proxy terminates the traffic calming
technique being applied to signaling messages related to the
application.

22. The system of claim 15 wherein, responsive to a
detection that the application is requesting content that has
been invalidated, the local proxy terminates the extended
caching optimization for that application.

10

15

20

25

30

35

40

88

23. The system of claim 18 wherein the local proxy
maintains a value of the shortest request interval (RI)
between successive requests from the application.

24. The system of claim 23 wherein the local proxy uses
the maintained value of the shortest RI to identify a non-
periodic request as being associated with the application.

25. The system of claim 18 wherein the local proxy
maintains a value of the longest response delay (RD)
observed between a request from the application and a
response to the request from the external entity.

26. The system of claim 25 wherein the local proxy uses
the maintained value of the longest RD to identify a request/
response interaction as a long-poll interaction for the appli-
cation.

27. The system of claim 26 wherein the local proxy uses
the maintained value of the longest RD as the polling
frequency during extended caching optimization for the
application.

28. The system of claim 15 wherein the first criterion for
optimization is selectable by a user of the mobile device.

29. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

identifying, at a mobile device for operating in a wireless

network, the device including a local proxy for moni-
toring requests issued from an application located
within the device to an external entity not located
within the device and for storing, in a local cache,
responses to the monitored requests received from the
external entity, a request as one that meets a first
criterion for optimization; and

in response to identifying the request as one that meets a

first criterion for optimization, applying an extended

caching optimization, wherein applying an extended

caching optimization includes:

preventing the identified request from being transmit-
ted to the external entity; and

providing a response to the identified request from the
local cache.

